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Underlined contents were not included in the tutorial because of time constraint, but
included here for completeness.

A solution to the Weierstrass problem on the disc without the boundedness assumption
is presented below. Some particular values of Γ and ζ were proven.

1 The Weierstrass problem and the Mittag-Leffler

problem

This section is mainly based on Chapter VIII.4 of Conway’s Functions of One Complex
Variable. Proposition 1 is from exercise 3 and Proposition 2 is a special case of Theorem
4.2.

The Mittag-Leffler problem concerns the existence of meromorphic functions with pre-
scribed principal parts . It has a similar form to the Weierstrass problem.

Weierstrass For every set {mn} ⊆ N, there exists a holomorphic function f that has mn

zeros at an, and no zero elsewhere.

Mittag-Leffler For every collection {gn} of meromorphic functions, with gn defined on
a neighbourhood of an and having an as the only pole, there exists a meromorphic
function g whose set of poles is {an}, and whose principal part at an agrees with gn.

The following proposition reduces the Weierstrass problem to the Mittag-Leffler problem.

Proposition 1. For a domain Ω in C and {an} ∈ Ω, Mittag-Leffler’s statement implies
Weierstrass’s.

Proof. Let gn(z) = mn/(z − an) and g be the global meromorphic function given by Mit-
tag Leffler’s statement. Fix a point z0 in the domain and define

f(z) = exp

ˆ z

z0

g(w)dw.

The integral above is not independent of path, but , by Residue theorem, the discrepancy
between two paths is always an integral multiple of 2πi (the fact that mn’s are integers is
crucial here), which is annihilated by the exponential function, and hence f is well defined
even though the integral is not.

f is clearly holomorphic and nonzero away from an. Near an, choosing z1 near an and
choosing a path through z1 that stays near an afterwards and choosing an arbitrary

branch of the logarithm shows f(z) = f(z1)
(
z−an
z1−an

)mn

. The result then follows.
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Indeed, the Mittag-Leffler problem is always solvable on the disc, as the following propo-
sition shows.

Proposition 2. Mittag-Leffler’s statement on the disc is true as long as {an} does not
accumulate.

Proof. Let (Rm) be a strictly increasing sequence with Rm → 1 and {Rm} ∩ {|an|} = ∅.
Let fm =

∑
|an|<Rm

gn, which is a finite sum, by discreteness.

If fm converges to some f∞, then the limit will be the desired function. However, it does
not in general. Nonetheless, observe that if fm does converge, telescoping gives

f∞ = fm +
∑
M≥m

(fM+1 − fM),

where each fm+1 − fm is holomorphic on a neighbourhood of B(0, Rm). To force conver-
gence, it suffices to approximate each term in the sum by a holomorphic function, since
subtraction by holomorphic functions do not change the principal parts.

More precisely, for each m, by Runge’s approximation (This may be bypassed on the disc;
see the remark after the proof for details.), let hm be a globally holomorphic function (i.e.
holomorphic on the disc) such that ‖fm+1 − fm − hm‖L∞(B(0,Rm) < ε/2m.

Then

ϕm = fm +

[∑
M≥m

(fM+1 − fM − hM)

]
is convergent on B(0, Rm) by construction, and has the correct poles and principal parts
on B(0, Rm). However, different ϕm’s, say ϕm and ϕm′ , do not agree on the intersection
of their domains, namely B(0, Rmin(m,m′)).

To enforce compatibility, a further holomorphic correction is needed: define

Fm = fm +

[∑
M≥m

(fM+1 − fM − hM)

]
− (h1 + ...+ hm−1).

Then Fm is convergent and has the correct poles and principal parts on B(0, Rm) and
different Fm defines the same function, and hence Fm defines the desired function.

Remark. In the proof above, Runge’s approximation is invoked to provide a global holo-
morphic approximation to a local holomorphic function. In the particular case of the disc
with gn(z) = mn

z−an , this can be done in a straight-forward manner. Since each fM+1 − fM
is then a finite sum of gn’s, it suffices to approximate each gn.

Let a = 4. Then
∣∣ z−an
z−a

∣∣ < 2/3 < 1 for z ∈ B(0, Rm), and hence

1

mn

gn(z) =
1

z − an
=

1

(z − a)− (zn − a)
=

1

z − a
1

1− z−an
z−a

=
1

z − a
∑
k≥0

(
z − an
z − a

)k
,

where the convergence is uniform on B(0, Rm). The result then follows as 1
z−a is holomor-

phic on the disc.
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Corollary 3. Weierstrass’s statement holds on D as long as {an} does not accumulate.

The following question was mentioned in the tutorial.

Question 4. Suppose {an} ⊆ Ω and {wn} ⊆ D. Suppose the an’s are distinct. Does
there exist a holomorphic function f on Ω such that f(an) = wn?

The answer is affirmative as long as Mittag-Leffler’s statement holds, or as long as Runge’s
approximation is always possible, which is the case for domains in C. The reason is that
one then has a holomorphic function g with a simple zero at each an and a meromorphic
h with principal part wn

g′(an)
1

(z−an)
at each an. Then f = gh is the desired function. This is

in fact the content of Theorem 15.13 in Rudin’s Real and Complex Analysis.

2 Particular Values of Γ and ζ

Proposition 5. The area of the unit sphere Sn−1 is 2πn/2

Γ(n/2)
.

Proof. Consider I =
´
Rn e

−πr2dV . Recall that
´
R e
−πx2dx = 1, which can be shown by

Fourier transform or by squaring and integrating with polar coordinates. Then I = 1.
Computing in spherical coordinates, since ∂

∂r
is the positive unit normal to the sphere,

dV = ωr ∧ dr = rn−1ω ∧ dr, where ωr and is the area form of the sphere of radius r, and
ω = ω1.

I =

ˆ
R+

(ˆ
Sn−1

e−πr
2

rn−1ω

)
dr

= area(Sn−1)

ˆ
R+

e−πr
2

rn−1dr

= area(Sn−1)
1

πn/2

ˆ
R+

e−tt(n−1)/2dt

= area(Sn−1)
Γ(n/2)

2πn/2

The result then follows.

The following proposition is from Problems 4-5 of Chapter 3 of Stein and Shakarchi’s
Fourier Analysis.

Let f(z) = z
ez−1

. Define the Bernoulli numbers Bn = f (n)(0).

Proposition 6. ζ(2m) = (−4π2)m

(2m)!
B2m

2
for integers m ≥ 1.

Proof. By considering the Taylor expansion of z = (ez − 1)f(z), the Bernoulli numbers
satisfy the following recursion.

Bn =


1 if n = 0

− 1
n+1

∑n−1
0

(
n+ 1

k

)
Bk if n > 0
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Since the odd part (f(z) − f(−z))/2 is simply −z/2, Bn = 0 for odd n > 1. Since
z cot z = 2iz

e2iz−1 + iz = f(2iz) + iz, we have

z cot z = 1 +
∞∑
1

(−1)n
22nB2n

(2n)!
z2n.

On the other hand, pole matching shows

z cot z = 1− 2z2

∞∑
1

1

z2 − n2π2

= 1− 2z2

∞∑
n=1

∞∑
m=0

1

(nπ)2m+2
z2m

= 1− 2z2

∞∑
m=0

1

π2m+2
ζ(2m+ 2)z2m.

The result then follows from coefficient comparison.


