THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018-2019 semester 1 MATH4060 Midterm solution

1. a. For $c \in \{a, b\}, |c| \leq 1$,

$$
\int_{R}^{\infty} |f(x+ic)| dx \le \int_{R}^{\infty} \frac{A}{1+x^2+c^2} dx
$$

$$
\le \int_{R}^{\infty} \frac{A}{x^2} dx \text{ if } R > 0
$$

$$
\le \frac{A}{R} \to 0 \text{ as } R \to +\infty
$$

$$
\int_{a}^{b} |f(R+iy)| dy \le \int_{a}^{b} \frac{A}{1+x^2+y^2} dy
$$

\n
$$
\le \int_{a}^{b} \frac{A}{x^2} dx \text{ if } R > 0
$$

\n
$$
\le \frac{A(b-a)}{R^2}
$$

\n
$$
\le \frac{2A}{R^2} \to 0 \text{ as } R \to +\infty
$$

The result then follows by summing.

b. Let Γ be the rectangular contour with corners R , $R - \text{sgn}(\xi)i$, $-R - \text{sgn}(\xi)i$ and $-R$. By Cauchy's theorem, since f is holomorphic, $\int_{\Gamma} f(z)dz = 0$. Letting $R \to \infty$, part (a) (applied on f and $-f$ with $a = -1$ and $b = 1$) shows $\hat{f}(\xi) =$ $\int_{\mathbb{R}-\text{sgn}(\xi)i} f(z)e^{-2\pi iz\xi} dx$. Then

$$
|\widehat{f}(\xi)| \leq \int_{\mathbb{R}} \frac{A}{1+x^2+1^2} e^{-2\pi \text{sgn}(\xi)\xi} dx \leq \int_{\mathbb{R}} \frac{A}{1+x^2} dx e^{-2\pi |\xi|} = Ce^{-2\pi |\xi|}.
$$

2. a. Let $B_t = B(0, t)$. Fix $z \in \mathbb{D} \setminus \{0\}$. Let $r < |z|/3 < |z| < R$. Then by Cauchy's theorem applied on $B_R \setminus B_r$,

$$
f(z) = \frac{1}{2\pi i} \int_{\partial B_R - \partial B_r} \frac{f(w)}{w - z} dw.
$$
 (1)

On ∂B_R , $|z/w| < 1 - |z|/R < 1$, [EDIT: $|z/w| < |z|/R < 1$] hence

$$
\int_{\partial B_R} \frac{f(w)}{w - z} dw = \int_{\partial B_R} \frac{f(w)}{w} \sum (z/w)^n dw = \sum_{n=0}^{\infty} \int_{\partial B_R} \frac{f(w)}{w^{n+1}} dw z^n.
$$

The interchange of the order of summation and integration follows by uniform convergence of the geometric series, since f is bounded on ∂B_R and the tail is bounded by $|z/w|^N/(1-|z/w|) \leq (1-|z|/R)^N/(|z|/R)$. Similarly,

$$
\int_{\partial B_r}\frac{f(w)}{w-z}dw=-\sum_{n=0}^\infty \int_{\partial B_r}f(w)w^ndw\frac{1}{z^{n+1}}.
$$

The desired equation then follows with

$$
c_n = \begin{cases} \frac{1}{2\pi i} \int_{\partial B_R} \frac{f(w)}{w^{n+1}} dw & \text{if } n \ge 0\\ \frac{1}{2\pi i} \int_{\partial B_r} \frac{f(w)}{w^{n+1}} dw & \text{if } n < 0 \end{cases}
$$

Cauchy's theorem applied on the $B_R \backslash B_r$ then shows $\frac{1}{2\pi i} \int_{\partial B_r}$ $\frac{f(w)}{w^{n+1}}$ dw $=\frac{1}{2\pi}$ $\frac{1}{2\pi i}\int_{\partial B_R}$ $\frac{f(w)}{w^{n+1}}$ dw, and hence

$$
c_n = \frac{1}{2\pi i} \int_{\partial B_R} \frac{f(w)}{w^{n+1}} dw,
$$

which is independent of z.

b. i. Consider (1), which holds for a fixed R with $0 < |z| < R$. Since $|f(z)| \leq \frac{A}{|z - z_0|^{1-\varepsilon}},$

$$
\left|\frac{1}{2\pi i}\int_{\partial B_r} \frac{f(w)}{w-z} dw\right| \leq \frac{1}{2\pi} \frac{A}{r^{1-\varepsilon}} \frac{1}{(2/3)|z-z_0|} (2\pi r)
$$

$$
= \frac{3A}{2|z-z_0|} r^{\varepsilon} \to 0 \text{ as } r \to 0
$$

Then $f(z) = \frac{1}{2\pi i} \int_{\partial B_R}$ $f(w)$ $\frac{f(w)}{w-z}$ dw, where the right-hand side is holomorphic by differentiation under integral sign. This is justified because the domain is a fixed compact set and the integrand is C^1 .

- ii. We prove the contrapositive. Suppose it is not dense, then it is bounded away from a number, say w_0 . Then $g = \frac{1}{f-4}$ $\frac{1}{f-w_0}$ is bounded near 0, and hence has a removable singularity. Therefore, $f = w_0 + \frac{1}{a}$ $\frac{1}{g}$. Taylor expanding g gives $g(z) = c_n z^n + c_{n+1} z^{n+1} + \dots = z^n (c_n + c_{n+1} z + \dots) = z^n h(z)$ for some $c_n \neq 0$, and hence holomorphic h with $h(0) \neq 0$. Therefore, $f(z) = w_0 + \frac{1}{z^2}$ $\overline{z^n}$ 1 $\frac{1}{h(z)},$ where $1/h$ is holomorphic near 0. Now, if $n = 0$, then the singularity of f is removable; if $n > 0$, it is a pole.
- 3. The image of the unit disc is open by open mapping theorem, and is relatively closed in the unit disc by compactness of the closed unit disc $(f(\partial B) \subseteq \partial B$ is used here). By connectedness, it suffices to show f has a zero. This can be done by applying maximum principle on f and $1/f$. [EDIT: Suppose not. Applying maximum principle on f and $1/f$ shows $|f| \equiv 1$, and hence f attains the maximum modulus in the interior, and hence is constant. The contradiction then follows.]
- 4. a. Let $f(z) = \sum_{n\geq 0}$ $\frac{(-1)^n}{(2n+1)!}\pi^{2n}z^n$. The series converges on $\mathbb C$ by root test. By direct inspection, $f(z^2) = \frac{\sin \pi z}{\pi z}$.

It follows that the set of zeros of $g(z) = z f(z)$ is precisely $\{n^2 : n \in \mathbb{Z}\}.$ For each z, choose one $z^{1/2}$. Then $f(z) = \frac{\sin \pi z^{1/2}}{\pi z^{1/2}}$, hence $g(z) \leq \frac{1}{\pi}$ $\frac{1}{\pi} |z|^{1/2} \frac{|e^{\pi i z^{1/2}} - e^{\pi i z^{1/2}}|}{2} \leq \frac{1}{\pi}$ $\frac{1}{\pi}e^{\log z/2 + \pi |z|^{1/2}} \leq \frac{1}{\pi}$ $rac{1}{\pi}e^{(\pi+\varepsilon)|z|^{1/2}}$ [EDIT: For each z, there exists some $w \in \mathbb{C}$ such that $w^2 = z$, and hence $|w| = |z|^{1/2}$. Then $f(z) = \frac{\sin \pi w}{\pi w}$, and hence .

$$
|g(z)| \le \frac{|z|}{\pi |w|} \frac{|e^{\pi i w} - e^{\pi i w}|}{2} \le \frac{1}{\pi} e^{\log|z|/2 + \pi |z|^{1/2}} \le \frac{1}{\pi} e^{(\pi + \varepsilon)|z|^{1/2}}
$$

-]
- b. Note that $f = h/g$ away from zeros of g, so f is meromorphic. To show holomorphicity, it suffices to show f is continuous at zeros of g , the only potential singularities of f (then f is bounded near every singularity, and hence by removable singularity theorem, f has a holomorphic correction. Since this correction and f itself are both continuous extensions from ${g \neq 0}$, which, has a discete complement and hence is dense. Then by uniqueness of the continuous extension, f is equal to this holomorphic correction, and hence holomorphic).

Let a be a zero of g. Then $f(a) = 0$. Since $|f| = \sqrt{|g|}$ is continuous, $f(z) \to 0$ as $z \to a$, and hence f is continuous at a. The result then follows.

5. Suppose not. Dividing by z^m if necessary, assume $f(0) \neq 0$.

Choose a sequence R_n such that $(n-1)/n < R_n < n/(n+1)$ and f has no zero on $\partial B(0, R_n)$.

Since log is negative on $(0, 1)$, Jensen's formula shows

$$
\log|f(0)| = \frac{1}{2\pi R_n} \int_{\partial B(0,R_n)} \log|f| + \sum_{\substack{a \text{ zero of } f \\ |a| < R_n}} \log\left|\frac{a}{R_n}\right| \le \log A + \sum_{m \le n} \log\left|\frac{(m-1)/m}{R_n}\right|.
$$
\n(2)

Telescoping gives

$$
\sum_{m \le n} \log \left| \frac{(m-1)/m}{R_n} \right| = \log \prod_{m \le n} \left| \frac{(m-1)/m}{R_n} \right|
$$

= $\log \left| \frac{1/n}{R_n^n} \right|$
 $\le -\log n - \log \left[\left(\frac{n-1}{n} \right)^n \right]$
 $\to -\infty - \log(1/e) = -\infty \text{ as } n \to \infty$

Therefore, the right-hand side of (2) tends to $-\infty$ as $n \to \infty$, contradictory to the constancy of the left-hand side. The result then follows.