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1. a. For c ∈ {a, b}, |c| ≤ 1,

∫ ∞
R

|f(x+ ic)|dx ≤
∫ ∞
R

A

1 + x2 + c2
dx

≤
∫ ∞
R

A

x2
dx if R > 0

≤ A

R
→ 0 as R→ +∞

∫ b

a

|f(R + iy)|dy ≤
∫ b

a

A

1 + x2 + y2
dy

≤
∫ b

a

A

x2
dx if R > 0

≤ A(b− a)

R2

≤ 2A

R2
→ 0 as R→ +∞

The result then follows by summing.

b. Let Γ be the rectangular contour with corners R, R − sgn(ξ)i, −R − sgn(ξ)i
and −R. By Cauchy’s theorem, since f is holomorphic,

∫
Γ
f(z)dz = 0. Letting

R → ∞, part (a) (applied on f and −f with a = −1 and b = 1) shows f̂(ξ) =∫
R−sgn(ξ)i

f(z)e−2πizξdx. Then

|f̂(ξ)| ≤
∫
R

A

1 + x2 + 12
e−2πsgn(ξ)ξdx ≤

∫
R

A

1 + x2
dxe−2π|ξ| = Ce−2π|ξ|.

2. a. Let Bt = B(0, t). Fix z ∈ D \ {0}. Let r < |z|/3 < |z| < R. Then by Cauchy’s
theorem applied on BR \Br,

f(z) =
1

2πi

∫
∂BR−∂Br

f(w)

w − z
dw. (1)

On ∂BR, |z/w| < 1− |z|/R < 1, [EDIT: |z/w| < |z|/R < 1] hence∫
∂BR

f(w)

w − z
dw =

∫
∂BR

f(w)

w

∑
(z/w)ndw =

∞∑
n=0

∫
∂BR

f(w)

wn+1
dwzn.



2

The interchange of the order of summation and integration follows by uniform
convergence of the geometric series, since f is bounded on ∂BR and the tail is
bounded by |z/w|N/(1− |z/w|) ≤ (1− |z|/R)N/(|z|/R). Similarly,∫

∂Br

f(w)

w − z
dw = −

∞∑
n=0

∫
∂Br

f(w)wndw
1

zn+1
.

The desired equation then follows with

cn =

{
1

2πi

∫
∂BR

f(w)
wn+1dw if n ≥ 0

1
2πi

∫
∂Br

f(w)
wn+1dw if n < 0

Cauchy’s theorem applied on theBR\Br then shows 1
2πi

∫
∂Br

f(w)
wn+1dw = 1

2πi

∫
∂BR

f(w)
wn+1dw,

and hence

cn =
1

2πi

∫
∂BR

f(w)

wn+1
dw,

which is independent of z.

b. i. Consider (1), which holds for a fixed R with 0 < |z| < R.
Since |f(z)| ≤ A

|z−z0|1−ε ,∣∣∣∣ 1

2πi

∫
∂Br

f(w)

w − z
dw

∣∣∣∣ ≤ 1

2π

A

r1−ε
1

(2/3)|z − z0|
(2πr)

=
3A

2|z − z0|
rε → 0 as r → 0

Then f(z) = 1
2πi

∫
∂BR

f(w)
w−z dw, where the right-hand side is holomorphic by

differentiation under integral sign. This is justified because the domain is a
fixed compact set and the integrand is C1.

ii. We prove the contrapositive. Suppose it is not dense, then it is bounded
away from a number, say w0. Then g = 1

f−w0
is bounded near 0, and hence

has a removable singularity. Therefore, f = w0 + 1
g
. Taylor expanding g gives

g(z) = cnz
n + cn+1z

n+1 + ... = zn(cn + cn+1z + ...) = znh(z) for some cn 6= 0,
and hence holomorphic h with h(0) 6= 0. Therefore, f(z) = w0 + 1

zn
1

h(z)
,

where 1/h is holomorphic near 0. Now, if n = 0, then the singularity of f is
removable; if n > 0, it is a pole.

3. The image of the unit disc is open by open mapping theorem, and is relatively closed
in the unit disc by compactness of the closed unit disc (f(∂B) ⊆ ∂B is used here).
By connectedness, it suffices to show f has a zero. This can be done by applying
maximum principle on f and 1/f . [EDIT: Suppose not. Applying maximum
principle on f and 1/f shows |f | ≡ 1, and hence f attains the maximum
modulus in the interior, and hence is constant. The contradiction then
follows.]

4. a. Let f(z) =
∑

n≥0
(−1)n

(2n+1)!
π2nzn. The series converges on C by root test. By direct

inspection, f(z2) = sinπz
πz

.
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It follows that the set of zeros of g(z) = zf(z) is precisely {n2 : n ∈ Z}.
For each z, choose one z1/2. Then f(z) = sinπz1/2

πz1/2
, hence

g(z) ≤ 1
π
|z|1/2 |e

πiz1/2−eπiz1/2 |
2

≤ 1
π
elog z/2+π|z|1/2 ≤ 1

π
e(π+ε)|z|1/2

[EDIT: For each z, there exists some w ∈ C such that w2 = z, and hence
|w| = |z|1/2. Then f(z) = sinπw

πw
, and hence

|g(z)| ≤ |z|
π|w|

|eπiw − eπiw|
2

≤ 1

π
elog |z|/2+π|z|1/2 ≤ 1

π
e(π+ε)|z|1/2 .

]

b. Note that f = h/g away from zeros of g, so f is meromorphic. To show holo-
morphicity, it suffices to show f is continuous at zeros of g, the only potential
singularities of f (then f is bounded near every singularity, and hence by remov-
able singularity theorem, f has a holomorphic correction. Since this correction
and f itself are both continuous extensions from {g 6= 0}, which, has a discete
complement and hence is dense. Then by uniqueness of the continuous extension,
f is equal to this holomorphic correction, and hence holomorphic).

Let a be a zero of g. Then f(a) = 0. Since |f | =
√
|g| is continuous, f(z) → 0

as z → a, and hence f is continuous at a. The result then follows.

5. Suppose not. Dividing by zm if necessary, assume f(0) 6= 0.

Choose a sequence Rn such that (n− 1)/n < Rn < n/(n+ 1) and f has no zero on
∂B(0, Rn).

Since log is negative on (0, 1), Jensen’s formula shows

log |f(0)| = 1

2πRn

∫
∂B(0,Rn)

log |f |+
∑

a zero of f
|a|<Rn

log | a
Rn

| ≤ logA+
∑
m≤n

log |(m− 1)/m

Rn

|.

(2)

Telescoping gives∑
m≤n

log |(m− 1)/m

Rn

| = log
∏
m≤n

|(m− 1)/m

Rn

|

= log |1/n
Rn
n

|

≤ − log n− log

[(
n− 1

n

)n]
→ −∞− log(1/e) = −∞ as n→∞

Therefore, the right-hand side of (2) tends to −∞ as n→∞, contradictory to the
constancy of the left-hand side. The result then follows.


