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5.10 By (5.2b), the orders of both functions are 1 (cos is a sum of exp). Then by
Hadamard factorisation theorem and symmetric grouping of factors,

f(z) = ez − 1 = eAz+Bz
∏
n 6=0

(1− z

2πin
)ez/(2πin) = eAz+Bz

∏
n>0

(1 +
z2

(2πn)2
)

g(z) = cos πz = eCz+D
∏
n∈Z

(1− z

n+ 1/2
)ez/(n+1/2) = eCz+D

∏
n>0

(1− z2

(n− 1/2)2
)

Considering f ′(0) = g(0) = 1 shows eB = eD = 1 and considering the constant
terms in (f ′/f)(0) and (g′/g)(0)shows A = 1/2 and C = 0.

5.11 Suppose f misses a and b, and a 6= b. By Hadamard’s factorisation theorem, since
f − a has no zero, f(z) = eP (z) for some polynomial P . By fundamental theorem
of algebra, P is surjective on C, and hence (f − a)(C) = C \ {0}. In particular,
b− a = f(z)− a for some z, contradictory to the assumption that f misses b.

5.14 We prove the contrapositive. Suppose f has finitely many zeros a1, ..., ak Then f/Q
has no zero for the polynomial Q(z) =

∏
(z − ai), and hence f = QeP for some

polynomial P . Then the order of f is the degree of P , and hence is integral.

5.15 By Weierstrass factorisation theorem, there exist holomorphic f and g such that
{an} and {bn} are the set of zeros of f and g respectively. Then h = f/g is a
meromorphic function that vanishes exactly at {an} and has poles exactly at {bn}.
Now, let ϕ be a meromorphic function with zeros {ãn} and poles {b̃n}. Then ϕ/h
is entire without zeros if h is defined with an = ãn and bn = b̃n. Then by taking log,
ϕ/h = eψ for some entire ψ. Then ϕ = (eψf)/g, where eψf and g are entire.

6.1 By the factorisation of 1/Γ, Γ(s) = e−γs 1
s

∏
n>0

n
n+s

es/n Since e−γs = limN e
s(logN−

∑N
1 1/n),

Γ(s) = lim
N
es(logN−

∑N
1 1/n) 1

s

N∏
1

n

n+ s
es/n

= lim
N

es logNN !

s(s+ 1)...(s+N)

= lim
N

N sN !

s(s+ 1)...(s+N)

6.4 Since f (n)(z) = α(α + 1)...(α + n− 1)(1− z)−(α+n),
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lim
n
an(α)/(nα−1/Γ(α)) = Γ(α) lim

n

α(α + 1)...(α + n− 1)

n!nα−1

= lim
n

nαn!

α(α + 1)...(α + n)
lim
n

α(α + 1)...(α + n− 1)

n!nα−1

= lim
n

α + n

= 1

6.5 Since Γ(z̄) is meromorphic and agrees on the positive real axis with Γ(z), Γ(z̄) = Γ(z).

The result then follows from the following chain of equations.

|Γ(1/2 + it)|2 = Γ(1/2 + it)Γ(1/2− it)

=
π

sin π(1/2 + it)

=
π

cosh πt
.......(sin(x+ iy) = sin x cosh y + i cosx sinh y)

6.7 a. Proceed hinted. The new bounds are then 0 < u < ∞ and 0 < r < 1 and the
Jacobian is

∣∣∣ ∂(s,t)
∂(u,r)

∣∣∣ = u, and hence

Γ(α+β) =

∫ ∞
0

e−uuα+β−1du

∫ 1

0

rα−1(1−r)β−1dr = Γ(α+β)

∫ 1

0

rα−1(1−r)β−1dr.

The result then follows by the change of variable t = 1− r.
b. In the defining integral of B, do the change of variable u = 1/(1 − t) − 1 to

change the domain of integration from (0, 1) to (0,∞). Then 1− t = 1/(u+1),
t = u/u+ 1 and dt = du/(u+ 1)2. This gives

B(α, β) =

∫ ∞
0

uβ−1

(u+ 1)α+β
du.

The result from interchanging α and β because part (a) implies B(α, β) =
B(β, α).

6.10 a. Consider the holomorphic function f(w) = e−wwz−1 on {w : <w > 0,=w > 0}
as hinted. Note |f(w)| ≤ e−<w|w|u−1, where u = <z ∈ (0, 1).

The integral on the small arc is bounded by

εu
∫ π/2

0

e−ε cos θdθ ≤ (π/2)εu → 0

as ε→ 0.

The integral on the large arc is bounded by

Ru

∫ π/2

0

e−R cos θdθ ≤ Ru

∫ π/2

0

e−R(1−(2/π)θ)dθ = Ru−1

∫ R

0

e−tdt ≤ Ru−1 → 0
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as R→∞.

Therefore,
∫∞

0
e−ittz−1dt = i−z

∫∞
0
e−ttz−1dt = eπiz/2Γ(z). Conjugating and re-

placing z by z̄ (note z̄ still lies in the vertical strip between 0 and 1) shows∫∞
0
eittz−1dt = e−πiz/2Γ(z). The result then follows by taking linear combina-

tions.

b. The equations follows by putting z = 0 and z = 1/2 into the second equation
in (a). It remains to show the equation holds on |<z| < 1. Right-hand side is
clearly holomorphic because the pole of Γ at 0 cancels with that of the zero
of sin. Left-hand isde is holomorphic on −1 + ε < <z < −ε by Morera’s
theorem, (break the integral into one on (0, 1) and (1,∞), where on the former
the integrand is bounded by t<z as | sin t| ≤ |t|).

6.12 a. For every positive integer k, applying sΓ(s) = Γ(s + 1) gives Γ(−1/2 − k) =
−2
√
π

(−1/2−1)(−1/2−2)...(−1/2−k)
, and hence

|1/Γ(−1/2− k)| ≥ k!

2
√
π
.

Since | − 1/2− k| ≤ 2k, 1/Γ(−1/2−k)

eA|1/2−k| ≥ k!
2
√
π(e2A)k

→∞, and hence 1/Γ(s) is not

O(eA|s|).

b. By Hadamard’s factorisation theorem, F = eP/Γ for some linear polynomial P ,
and hence 1/Γ = e−PF . If F (z) = O(eC|z|), then so is 1/Γ. The contradiction
then follows.

6.14 a. fundamental theorem of calculus

b. Since Γ, and hence log Γ is eventually increasing on the positive real axis (be-
cause log Γ is convex (see Theorem 8.18c of Rudin’s Principles of Mathematical

Analysis), and Γ(3) > Γ(2)), log Γ(x) ≤
∫ x+1

x
log Γ ≤ log Γ(x + 1), or equiva-

lently,

(x−1) log(x−1)−(x−1)+c ≤
∫ x

x−1

log Γ ≤ Γ(x) ≤
∫ x+1

x

log Γ = x log x−x+c,

Since for every α < 1, for x sufficiently large, (x− 1) log(x− 1)− (x− 1) + c ≥
αx log(αx)+o(x log x) ≥ αx log x+o(x log x), and hence Γ(x) ∼ x log x−x+c,
where −x+ c = O(x). The result then follows.

6.15 ∫ ∞
0

ts

et − 1

dt

t
=

∫ ∞
0

ts
∞∑
1

e−nt
dt

t

=
∞∑
1

∫ ∞
0

(t/n)se−t
dt

t

=
∞∑
1

1

ns
Γ(s)

= ζ(s)Γ(s)
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The exchange of integral is justified by Fubini’s theorem for real s because the all
expressions are nonnegative, and hence for all s with <s > 1 because |(t/n)s| ≤
(t/n)<s, which reduces to the real case. [There are two versions of Fubini’s theorem.
The first, not mentioned in the tutorial note, says if a function f is measurable
and nonnegative,

∫
R2 fdA =

∫
R

∫
R fdxdy =

∫
R

∫
R fdydx. The second, mentioned in

tutorial note 2, says the same conclusion holds if at least one of the three integrals
is finite when f is replaced by |f |.]

6.16 Split the integral in 6.15 to one over (0, 1) and (1,∞). The one on (1,∞) converges
absolutely uniformly on compact sets, and hence by Morera’s theorem defines a
holomorphic function. For the one on (0, 1), ts

et−1
1
t

= ts−2 t
et−1

= ts−2
∑∞

0 cnt
n,

where t
et−1

=
∑∞

0 cnt
n, by holomorphy, converges uniformly on compact subsets

of B(0, 2π), and in particular, (0, 1). Termwise integration, justified by uniform

convergence, then shows
∫ 1

0
ts

et−1
dt
t

=
∑∞

0
cn

n+s−1
, whose poles are 1, 0,−1,−2, ..., all

of which except 1 cancel with the zeros of 1
Γ(s)

.

Therefore, ζ(s) = 1
Γ(s)

∫ 1

0
ts

et−1
dt
t

+ 1
Γ(s)

∫∞
1

ts

et−1
dt
t
, where the former term has a unique

pole that is simple at 1 and the latter is entire.


