THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018-2019 semester 1 MATH4060 Homework 2 solution

2.11 Cauchy integral formula gives

$$
\frac{1}{2\pi} \int f(w) \frac{w}{w - z} dt = f(z),
$$

where $w = Re^{it}$. Let $\zeta = R^2/\overline{z}$. Then $|\zeta| > R$, and hence $f(w)/(w - \zeta)$ is holomorphic on $B(0, R)$. Then $\frac{1}{2\pi} \int_0^{2\pi} f(w) \frac{\bar{z}}{\bar{z}-1}$ $\frac{\bar{z}}{\bar{z}-\bar{w}}dt = \frac{1}{2\pi}$ $\frac{1}{2\pi i}\int_{\partial B(0,R)}$ $f(w)$ $\frac{f(w)}{w-\zeta}dw = 0$. Note $\frac{\bar{z}}{\bar{z}-\bar{w}}=1+\left(\frac{w}{z-1}\right)$ $\left(\frac{w}{z-w}\right)$ Summing the two equations gives

$$
f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(w) \left(\frac{w}{z - w} + 1 + \overline{\left(\frac{w}{z - w} \right)} \right) dt
$$

=
$$
\frac{1}{2\pi} \int_0^{2\pi} f(w) \Re \left(\frac{2w}{z - w} + 1 \right) dt
$$

=
$$
\frac{1}{2\pi} \int_0^{2\pi} f(w) \Re \left(\frac{z + w}{z - w} \right) dt
$$

Part b follows from direct computation.

- **2.12** a. Define $v(z) = \int_0^z (-u_y dx + u_x dy)$, which is well defined by simple-connectedness of \mathbb{D} . Then $f = u + iv$ satisfies Cauchy-Riemann equations and hence is holomorphic. Then $\Re f = u$. For uniqueness, since the difference of the two holomorphic function has a constant real part (namely 0), the difference is a constant, and hence the imaginary part is also determined up to a constant.
	- b. Apply the formula in $2.11(a)$ on f defined in (a). Consider the real part.
- **3.11** a. By mean-value property of the harmonic function $\log |1 z|$, the integral is $2\pi a \log |1 - 0| = 0.$
	- b. By dominated convergence theorem, it suffices to dominate $\log |1 ae^{i\theta}|$ for $|\theta| \leq \pi$ as $a \to 1^-$. It is claimed that

$$
f(\theta) = \begin{cases} |\log |\theta/2|| & \text{if } |\theta| < \varepsilon \\ \log |1 - e^{i\theta}| + \eta & \text{otherwise} \end{cases}
$$

is a such a dominator for suitable ε , $\eta > 0$. By integration by parts, it is integrable. It remains to show it indeed dominates the functions. For $|\theta| > \varepsilon$ and a suitable ε , $|ae^{i\theta} - 1| \ge |\sin \theta| \ge |\theta|/2$, and hence $|\log |1 - a_n e^{i\theta}| \le |\log |\theta/2|$. For $|\theta| \geq \varepsilon$, log $|re^{i\theta}|$ is uniformly continuous on $\overline{B(0,1)\setminus\{| \arg z| < \varepsilon\}}$, the convergence is uniform, and hence $\log |1 - e^{i\theta}| + \eta$ eventually dominates the functions.

- **3.19** 1. $E = \{u(x) = \max u\}$ is closed by continuity. It is also open: if $u(x_0) = \max u$, then by mean-value property, $u(x) = \max u$ for $x \in \partial B(x_0, \rho)$, and hence by letting ρ vary, for $x \in B(x_0, r)$. Then by connectedness, E is either the whole set, in which case u is constant; or the empty set, in which case u does not attain the maximum.
	- 2. By compactness, the maximum is attained on $\overline{\Omega}$. Since it is not attained on $\overline{\Omega}$, it is attained on $\overline{\Omega} \setminus \Omega$. The result then follows.

3.20 a. claim:
$$
f(z) = \frac{1}{\pi R^2} \int_{B(z,R)} f
$$
 if f is holomorphic on $B(z,R)$.

Parametrizing Cauchy integral formula gives $f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + \rho e^{it}) dt$. Since $dA = \rho d\rho d\theta$, the claim then follows by multiplying by ρ and integrating wrt ρ from 0 to R.

By considering $z \in B(z_0, s)$ and $R = r - s$, $||f||_{L^{\infty}(D_s(z_0))} \leq \frac{1}{\pi(r-s)}$ $\frac{1}{\pi(r-s)^2}$ $|| f ||_{L^2(B(z_0,r))}$.

- b. Cover the compact set with finitely many $B(z_i, r_i)$'s such that $B(z_i, 2r_i) \subseteq U$. It suffices to show uniform convergence on each $B(z_i, r_i)$. Since $\{f_n\}$ is Cauchy in $L^2(U)$, it is Cauchy in $L^2(B(z_i, 2r_i))$, and hence by part (a), in $L^{\infty}(B(z_i, r_i))$. The result then follows from the completeness of L^{∞} and Morera's theorem.
- **5.2** 1. Since $\log R = o(R^s)$ as $R \to \infty$ for every $s > 0$, $n \log |z| \leq |z|^s$, and hence $|z^n| \leq \exp(|z|^n)$ for large $|z|$ for every $s > 0$. Therefore, the order is 0.
	- 2. Since $|\exp(bz^n)| = \exp(\Re(bz^n))$, where $u = \Re(bz^n)$ is a polynomial of degree at most n, and hence $u = o(|z|^{n+\varepsilon})$ for every $\varepsilon > 0$, and hence the order is at most *n*.

Putting $z_R = b/\bar{b} \Big|^{1/n} R$, such that $f(z_R) = \exp(|b|R^n) > 0$. Taking log shows it is impossible that $f(z_R) \leq A \exp(BR^{n-\varepsilon})$, so the order is indeed n.

3. Consider positive z and take log. The order is ∞ .

5.3 Let
$$
t = \Im \tau
$$
.

Note that $-n^2t + 2|n||z| \le -\frac{1}{2}n^2t$ if $n \ge 4|z|/t$. Then

$$
|\Theta(z|\tau)| \leq \sum e^{-\pi n^2 t} e^{2\pi |n||z|}
$$

\n
$$
\leq \sum_{n \geq 4|z|/t} e^{-\frac{1}{2}\pi n^2 t} + \sum_{n < 4|z|/t} e^{-\pi n^2 t} e^{2\pi |n||z|}
$$

\n
$$
\leq \sum e^{-\frac{1}{2}\pi n^2 t} + \sum_{n < 4|z|/t} e^{-\pi n^2 t} e^{(8\pi/t)|z|^2}
$$

\n
$$
\leq \sum e^{-\frac{1}{2}\pi n^2 t} + \sum e^{-\pi n^2 t} e^{(8\pi/t)|z|^2}
$$

\n
$$
= C + C e^{(8\pi/t)|z|^2}
$$

\n
$$
\leq C e^{C|z|^2}
$$

Therefore, the order is at most 2. To show equality, observe that $\Theta(z + \tau | \tau) =$ $e^{-\pi i(\tau+2z)}\Theta(z|\tau)$. Then $\Theta(z+k\tau|\tau)=e^{-\pi i(2kz+k^2\tau)}\Theta(z|\tau)$. Now, if k is large enough, $|z + k\tau| \leq 2k|\tau|$, and in particular, if $z \in \mathbb{R}$,

$$
|\Theta(z + k\tau|\tau)| = e^{-\pi k^2 \Im \tau} |\Theta(z|\tau)| \ge e^{-\pi |z + k\tau|^2 \Im \tau/(4|\tau|^2)} |\Theta(z|\tau)|.
$$

The result then follows if $\Theta(\cdot|\tau)$ is not identically zero, and hence $\Theta(z|\tau) \neq 0$ for some real z. Since $\Theta(\cdot|\tau)$ is a Fourier series on R with nonzero coefficients, it is not identically zero. The result then follows.

5.4 a. Fix z such that |z| is large. Define F_1 and F_2 as in the hint, with N being the last integer such that $Nt - |z| \leq \frac{\log 2}{2\pi}$. Then if $|z|$ is large enough,

$$
\frac{1-\varepsilon}{t}|z|\leq N< N+1\leq \frac{1+\varepsilon}{t}|z|.
$$

We first show that $|F_2(z)|$ is bounded between positive constants, or rather, its log is bounded.

$$
\log |F_2(z)| = \sum_{n>N} \log |1 - e^{-2\pi nt} e^{2\pi i z}|.
$$

Taylor expansion gives

$$
\frac{1}{2}|w| \le |\log(1 - w)| \le 2|w|
$$

for $|w| < 1/2$, and indeed by the choice of N, $|e^{-2\pi nt}e^{2\pi iz}| \leq 1/2$, hence 1 $\frac{1}{2}|G(z)| \leq \log |F_2(z)| \leq 2|G(z)|$, where

$$
G(z) = \sum_{n>N} e^{-2\pi nt} e^{2\pi iz} = \frac{1}{1 - e^{-2\pi t}} e^{-2\pi (N+1)t} e^{2\pi iz}.
$$

Then by maximality of N , we have

$$
\frac{e^{-2\pi t}}{2} \frac{1}{1 - e^{-2\pi t}} \le |G(z)| \le \frac{1}{2} \frac{1}{1 - e^{-2\pi t}}.
$$

Combining,

$$
\frac{e^{-2\pi t}}{4} \frac{1}{1 - e^{-2\pi t}} \le \log |F_2(z)| \le \frac{1}{1 - e^{-2\pi t}}.
$$

Boundedness of $|F_2(z)|$ by positive constants then follows. Now it suffices to consider F_1 . Since $|e^{-2\pi nt}e^{2\pi iz}| \geq 1/2$, and hence

$$
|1 - e^{-2\pi n t}e^{2\pi i z}| \leq 1 + e^{-2\pi n t}e^{2\pi |z|} \leq 3e^{2\pi |z|},
$$

$$
|F_1(z)| \le \prod |1 - e^{-2\pi nt} e^{2\pi iz}|
$$

\n
$$
\le 3^N e^{2\pi N|z|}
$$

\n
$$
\le \exp(\frac{1+\varepsilon}{t}(|z|\log 3 + 2\pi|z|^2))
$$

\n
$$
\le \exp(\frac{1+2\varepsilon}{t}(2\pi|z|^2))...|z| \text{ sufficiently large}
$$

Therefore, F is of order at most 2.

To show the order is indeed 2, let $z_k = 1/2 - kt$. Then $kt < |z_k| \leq (1 + \varepsilon)kt$ for k sufficiently large. Since

$$
|1 - e^{-2\pi nt}e^{2\pi iz}| = 1 + e^{-2\pi nt}e^{2\pi kt} \ge e^{-2\pi nt}e^{2\pi kt},
$$

\n
$$
|F_1(z)| \ge \prod_{1}^{N} e^{-2\pi nt}e^{2\pi kt}
$$

\n
$$
= \exp(-\pi N(N+1)t + 2\pi Nkt)
$$

\n
$$
\ge \exp(\pi \frac{1-\varepsilon}{t}|z_k|(-(1+\varepsilon)|z_k| + 2\frac{1}{1+\varepsilon}|z_k|)
$$

Note that the argument of exp in the last line is a quadratic in $|z_k|$ with a positive exponent if ε is sufficiently small. Therefore, $|F_1(z_k)| \ge A \exp(B|z_k|^2)$, and the result follows.

b. A factor vanishes precisely when $i(z + 2m) = nt$, so the function vanishes at $z = -int + m$.

For exponent $=-2$,

$$
\sum |z_k|^{-2} = \sum \sum \frac{1}{(nt)^2 + m^2}
$$

\n
$$
\geq \sum_{n\geq 1} \sum_{m\geq nt} \frac{1}{2m^2}
$$

\n
$$
\geq \sum_{n\geq 1} \int_{nt}^{\infty} \frac{1}{x} dx
$$

\n
$$
= \sum_{n\geq 1} \frac{1}{nt}
$$

\n
$$
= \infty
$$

For exponent $\langle -2, 1 \rangle$ it suffices to consider $m, n \geq 0$ by symmetry, and $m, n > 0$ since $\sum_{j=1}^{\infty} 1/j^2 < \infty$.

$$
\sum_{n,m>0} \frac{1}{|(nt,m)|^{-2-\epsilon}} \le 1 + \sum_{n,m>0; (n,m)\neq(1,1)} \int_{(n-1)t}^{nt} \int_{m-1}^{m} \frac{1}{|(nt,m)|^{-2-\epsilon}}
$$

\n
$$
\le 1 + \int_{|(x,y)|>\delta} |(x,y)|^{-2-\epsilon} dxdy
$$

\n
$$
\le 1 + \int_{0}^{2\pi} \int_{\delta}^{\infty} r^{-1-\epsilon} dr d\theta
$$

\n
$$
\le 1 + 2\pi \frac{1}{\epsilon} \delta^{-\epsilon}
$$

\n
$$
< \infty
$$

5.5 Holomorphicity on $|z| \leq M$ follows from Morera's theorem and Fubini's theorem. To show the order is at most $\alpha/(\alpha-1)$, by Young's inequality, which bounds cross terms,

$$
|zt| \leq C_{\varepsilon} |z|^{\alpha/(\alpha-1)} + \varepsilon |t|^{\alpha},
$$

(The basic Young's inequality says $|ab| \leq \frac{|a|^p}{p} + \frac{|b|^q}{q}$ $q^{\frac{p|q}{q}}$ if $p, q > 1$ and $1/p + 1/q = 1$. Replacing a and b by a/δ and δb , where δ is chosen according to ε , gives $|ab| \leq$ $C_{\varepsilon}|a|^p + \varepsilon|b|^q.$

hence

$$
|F_{\alpha}(z)| \leq \int e^{-|t|^{\alpha}} e^{C|z|^{\alpha/(\alpha-1)}} e^{\varepsilon |z|^{\alpha}} dt \leq e^{C|z|^{\alpha/(\alpha-1)}} \int e^{-(1-\varepsilon)|t|^{\alpha}} dt,
$$

where the integral is a finite number independent of z.

For the reverse inequality, put $z = -iR$ so that the integrand is positive. Then the integral on R is bounded below by the integral on $[M-1, M]$, where $M = R^{1/(\alpha-1)}$. On this interval, the integrand is bounded below by $\exp(-M^{\alpha}+2\pi RM) = \exp((2\pi 1)R^{\alpha/(\alpha-1)}$ if R is large enough. The result then follows.

- **5.6** Plug in $z = 1/2$ into $\sin \pi z = \pi z \prod [1 (z/n)^2]$.
- **5.7** a. Taylor approximating log at 1 quadratically gives $|\log(1 + a_n) a_n| \leq C|a_n|^2$, so the by Cauchy criterion, convergence of either $\sum \log(1 + a_n)$ or $\sum a_n$ implies that of the other whenever $\sum |a_n|^2$ converges.
	- b. Let $0 < x_n < 1$, $x_n \to 0$ but $\sum x_n^2 = \infty$, say, $x_n = 1/(n+1)^{(1-\epsilon)/2}$. Let

$$
a_m = \begin{cases} x_{m/2} & \text{if } m \text{ even} \\ -x_{(m+1)/2} & \text{if } m \text{ odd} \end{cases}.
$$

 $\sum a_m$ is convergent because it is an alternating sum with terms vanishing at infinity. The divergence of $\prod_{n=1}^{\infty} (1+a_m)$ follows from that of $\sum_{n=1}^{\infty} \log(1+a_m)$, which, by grouping each pair of terms, is $\sum \log(1 - x_n^2) < -\frac{1}{2}$ $\frac{1}{2}\sum x_n^2 = -\infty.$

c. $a_1 = -1$ and $a_n = 1$ for $n > 1$.

5.8 Fix z. Repeated application of the double-angle formula for sine gives

$$
\frac{\sin z}{z} / \frac{\sin(z/2^n)}{z/2^n} = \cos(z/2) \cos(z/4) \dots \cos(z/2^n).
$$

The result follows from letting $n \to \infty$.

5.9 Inductively, $\prod_{0}^{L} (1 + z^{2^{k}}) = \sum_{0}^{2^{L+1}-1}$ $2^{2^{L+1}-1}z^j$. The result follows from letting $n \to \infty$.