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2.11 Cauchy integral formula gives

1

2π

∫
f(w)

w

w − z
dt = f(z),

where w = Reit. Let ζ = R2/z̄. Then |ζ| > R, and hence f(w)/(w − ζ) is

holomorphic on B(0, R). Then 1
2π

∫ 2π

0
f(w) z̄

z̄−w̄dt = 1
2πi

∫
∂B(0,R)

f(w)
w−ζ dw = 0. Note

z̄
z̄−w̄ = 1 +

(
w
z−w

)
Summing the two equations gives

f(z) =
1

2π

∫ 2π

0

f(w)

(
w

z − w
+ 1 +

(
w

z − w

))
dt

=
1

2π

∫ 2π

0

f(w)<
(

2w

z − w
+ 1

)
dt

=
1

2π

∫ 2π

0

f(w)<
(
z + w

z − w

)
dt

Part b follows from direct computation.

2.12 a. Define v(z) =
∫ z

0
(−uydx+uxdy), which is well defined by simple-connectedness

of D. Then f = u + iv satisfies Cauchy-Riemann equations and hence is
holomorphic. Then <f = u. For uniqueness, since the difference of the two
holomorphic function has a constant real part (namely 0), the difference is a
constant, and hence the imaginary part is also determined up to a constant.

b. Apply the formula in 2.11(a) on f defined in (a). Consider the real part.

3.11 a. By mean-value property of the harmonic function log |1 − z|, the integral is
2πa log |1− 0| = 0.

b. By dominated convergence theorem, it suffices to dominate log |1 − aeiθ| for
|θ| ≤ π as a→ 1−. It is claimed that

f(θ) =

{
| log |θ/2|| if |θ| < ε

log |1− eiθ|+ η otherwise

is a such a dominator for suitable ε, η > 0. By integration by parts, it is inte-
grable. It remains to show it indeed dominates the functions. For |θ| ≥ ε and a
suitable ε, |aeiθ − 1| ≥ | sin θ| ≥ |θ|/2, and hence | log |1− aneiθ|| ≤ | log |θ/2||.
For |θ| ≥ ε, log |reiθ| is uniformly continuous on B(0, 1) \ {| arg z| < ε}, the
convergence is uniform, and hence log |1 − eiθ| + η eventually dominates the
functions.
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3.19 1. E = {u(x) = maxu} is closed by continuity. It is also open: if u(x0) = maxu,
then by mean-value property, u(x) = maxu for x ∈ ∂B(x0, ρ), and hence by
letting ρ vary, for x ∈ B(x0, r). Then by connectedness, E is either the whole
set, in which case u is constant; or the empty set, in which case u does not
attain the maximum.

2. By compactness, the maximum is attained on Ω̄. Since it is not attained on Ω,
it is attained on Ω̄ \ Ω. The result then follows.

3.20 a. claim: f(z) = 1
πR2

∫
B(z,R)

f if f is holomorphic on B(z,R).

Parametrizing Cauchy integral formula gives f(z) = 1
2π

∫ 2π

0
f(z+ρeit)dt. Since

dA = ρdρdθ, the claim then follows by multiplying by ρ and integrating wrt ρ
from 0 to R.

By considering z ∈ B(z0, s) and R = r−s, ‖f‖L∞(Ds(z0)) ≤ 1
π(r−s)2‖f‖L2(B(z0,r)).

b. Cover the compact set with finitely many B(zi, ri)’s such that B(zi, 2ri) ⊆ U .
It suffices to show uniform convergence on each B(zi, ri). Since {fn} is Cauchy
in L2(U), it is Cauchy in L2(B(zi, 2ri)), and hence by part (a), in L∞(B(zi, ri)).
The result then follows from the completeness of L∞ and Morera’s theorem.

5.2 1. Since logR = o(Rs) as R → ∞ for every s > 0, n log |z| ≤ |z|s, and hence
|zn| ≤ exp(|z|n) for large |z| for every s > 0. Therefore, the order is 0.

2. Since | exp(bzn)| = exp(<(bzn)), where u = <(bzn) is a polynomial of degree
at most n, and hence u = o(|z|n+ε) for every ε > 0, and hence the order is at
most n.

Putting zR = ¯b/|b|1/nR, such that f(zR) = exp(|b|Rn) > 0. Taking log shows
it is impossible that f(zR) ≤ A exp(BRn−ε), so the order is indeed n.

3. Consider positive z and take log. The order is ∞.

5.3 Let t = =τ .

Note that −n2t+ 2|n||z| ≤ −1
2
n2t if n ≥ 4|z|/t. Then

|Θ(z|τ)| ≤
∑

e−πn
2te2π|n||z|

≤
∑

n≥4|z|/t

e−
1
2
πn2t +

∑
n<4|z|/t

e−πn
2te2π|n||z|

≤
∑

e−
1
2
πn2t +

∑
n<4|z|/t

e−πn
2te(8π/t)|z|2

≤
∑

e−
1
2
πn2t +

∑
e−πn

2te(8π/t)|z|2

= C + Ce(8π/t)|z|2

≤ CeC|z|
2

Therefore, the order is at most 2. To show equality, observe that Θ(z + τ |τ) =
e−πi(τ+2z)Θ(z|τ). Then Θ(z+kτ |τ) = e−πi(2kz+k

2τ)Θ(z|τ). Now, if k is large enough,
|z + kτ | ≤ 2k|τ |, and in particular, if z ∈ R,

|Θ(z + kτ |τ)| = e−πk
2=τ |Θ(z|τ)| ≥ e−π|z+kτ |

2=τ/(4|τ |2)|Θ(z|τ)|.
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The result then follows if Θ(·|τ) is not identically zero, and hence Θ(z|τ) 6= 0 for
some real z. Since Θ(·|τ) is a Fourier series on R with nonzero coefficients, it is not
identically zero. The result then follows.

5.4 a. Fix z such that |z| is large. Define F1 and F2 as in the hint, with N being the
last integer such that Nt− |z| ≤ log 2

2π
. Then if |z| is large enough,

1− ε
t
|z| ≤ N < N + 1 ≤ 1 + ε

t
|z|.

We first show that |F2(z)| is bounded between positive constants, or rather, its
log is bounded.

log |F2(z)| =
∑
n>N

log |1− e−2πnte2πiz|.

Taylor expansion gives

1

2
|w| ≤ | log(1− w)| ≤ 2|w|

for |w| < 1/2, and indeed by the choice of N , |e−2πnte2πiz| ≤ 1/2, hence
1
2
|G(z)| ≤ log |F2(z)| ≤ 2|G(z)|, where

G(z) =
∑
n>N

e−2πnte2πiz =
1

1− e−2πt
e−2π(N+1)te2πiz.

Then by maximality of N , we have

e−2πt

2

1

1− e−2πt
≤ |G(z)| ≤ 1

2

1

1− e−2πt
.

Combining,
e−2πt

4

1

1− e−2πt
≤ log |F2(z)| ≤ 1

1− e−2πt
.

Boundedness of |F2(z)| by positive constants then follows.

Now it suffices to consider F1. Since |e−2πnte2πiz| ≥ 1/2, and hence

|1− e−2πnte2πiz| ≤ 1 + e−2πnte2π|z| ≤ 3e2π|z|,

|F1(z)| ≤
∏
|1− e−2πnte2πiz|

≤ 3Ne2πN |z|

≤ exp(
1 + ε

t
(|z| log 3 + 2π|z|2))

≤ exp(
1 + 2ε

t
(2π|z|2))...|z| sufficiently large

Therefore, F is of order at most 2.
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To show the order is indeed 2, let zk = 1/2 − kt. Then kt < |zk| ≤ (1 + ε)kt
for k sufficiently large. Since

|1− e−2πnte2πiz| = 1 + e−2πnte2πkt ≥ e−2πnte2πkt,

|F1(z)| ≥
N∏
1

e−2πnte2πkt

= exp(−πN(N + 1)t+ 2πNkt)

≥ exp(π
1− ε
t
|zk|(−(1 + ε)|zk|+ 2

1

1 + ε
|zk))

Note that the argument of exp in the last line is a quadratic in |zk| with a
positive exponent if ε is sufficiently small. Therefore, |F1(zk)| ≥ A exp(B|zk|2),
and the result follows.

b. A factor vanishes precisely when i(z + 2m) = nt, so the function vanishes at
z = −int+m.

For exponent = −2,∑
|zk|−2 =

∑∑ 1

(nt)2 +m2

≥
∑
n≥1

∑
m≥nt

1

2m2

≥
∑
n≥1

∫ ∞
nt

1

x
dx

=
∑
n≥1

1

nt

=∞

For exponent < −2, it suffices to consider m,n ≥ 0 by symmetry, and m,n > 0
since

∑∞
j=1 1/j2 <∞.∑

n,m>0

1

|(nt,m)|−2−ε ≤ 1 +
∑

n,m>0;(n,m)6=(1,1)

∫ nt

(n−1)t

∫ m

m−1

1

|(nt,m)|−2−ε

≤ 1 +

∫∫
|(x,y)|>δ

|(x, y)|−2−εdxdy

≤ 1 +

∫ 2π

0

∫ ∞
δ

r−1−εdrdθ

≤ 1 + 2π
1

ε
δ−ε

<∞

5.5 Holomorphicity on |z| ≤ M follows from Morera’s theorem and Fubini’s theorem.
To show the order is at most α/(α− 1), by Young’s inequality, which bounds cross
terms,

|zt| ≤ Cε|z|α/(α−1) + ε|t|α,
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(The basic Young’s inequality says |ab| ≤ |a|p
p

+ |b|q
q

if p, q > 1 and 1/p + 1/q = 1.

Replacing a and b by a/δ and δb, where δ is chosen according to ε, gives |ab| ≤
Cε|a|p + ε|b|q.)
hence

|Fα(z)| ≤
∫
e−|t|

α

eC|z|
α/(α−1)

eε|z|
α

dt ≤ eC|z|
α/(α−1)

∫
e−(1−ε)|t|αdt,

where the integral is a finite number independent of z.

For the reverse inequality, put z = −iR so that the integrand is positive. Then the
integral on R is bounded below by the integral on [M − 1,M ], where M = R1/(α−1).
On this interval, the integrand is bounded below by exp(−Mα+2πRM) = exp((2π−
1)Rα/(α−1)) if R is large enough. The result then follows.

5.6 Plug in z = 1/2 into sin πz = πz
∏

[1− (z/n)2].

5.7 a. Taylor approximating log at 1 quadratically gives | log(1+an)−an| ≤ C|an|2, so
the by Cauchy criterion, convergence of either

∑
log(1 + an) or

∑
an implies

that of the other whenever
∑
|an|2 converges.

b. Let 0 < xn < 1, xn → 0 but
∑
x2
n =∞, say, xn = 1/(n+ 1)(1−ε)/2. Let

am =

{
xm/2 if m even

−x(m+1)/2 if m odd
.

∑
am is convergent because it is an alternating sum with terms vanishing at

infinity. The divergence of
∏

(1+am) follows from that of
∑

log(1+am), which,
by grouping each pair of terms, is

∑
log(1− x2

n) < −1
2

∑
x2
n = −∞.

c. a1 = −1 and an = 1 for n > 1.

5.8 Fix z. Repeated application of the double-angle formula for sine gives

sin z

z
/

sin(z/2n)

z/2n
= cos(z/2) cos(z/4)... cos(z/2n).

The result follows from letting n→∞.

5.9 Inductively,
∏L

0 (1 + z2k) =
∑2L+1−1

0 zj. The result follows from letting n→∞.


