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1.8 Note that for f = u+ iv,

M

[
∂xu ∂yu
∂xv ∂yv

]
=

[
∂zf ∂z̄f
∂zf̄ ∂z̄f̄

]
M =

[
∂xf ∂yf
∂xf̄ ∂yf̄

]
,

where M =

[
1 i
1 −i

]
.

Then [
∂zh ∂z̄h
∂zh̄ ∂z̄h̄

]
= M

[
∂x<h ∂y<h
∂x=h ∂y=h

]
M−1

= M

([
∂u<g ∂v<g
∂u=g ∂v=g

] [
∂xu ∂yu
∂xv ∂yv

])
M−1

= M

(
M−1

[
∂zg ∂z̄g
∂zḡ ∂z̄ḡ

]
M

)(
M−1

[
∂zf ∂z̄f
∂zf̄ ∂z̄f̄

]
M

)
M−1

=

[
∂zg ∂z̄g
∂zḡ ∂z̄ḡ

] [
∂zf ∂z̄f
∂zf̄ ∂z̄f̄

]
.

The result follows by considering the first row.

1.13 If either the real part or the imaginary part is constant, then so is its harmonic
conjugate, and hence the function itself. By maximum principle, constant modulus
implies constant function value.

Alternatively, constant modulus means log f (defined locally) has a constant real
part, and hence log f , and hence f is constant.

Alternatively, it suffices to show ∂zf = 0. Constancy of |f |2 implies f̄ = (|f |2)/f is
holormophic, hence ∂zf = ∂z̄f̄ = 0, and hence ∂zf = 0. The result then follows.

1.14

N∑
n=M

anbn =
N∑

n=M

an(Bn −Bn−1) =
N∑

n=M

anBn −
N∑

n=M

anBn−1

=
N∑

n=M

anBn −
N∑

n=M

(an − an−1)Bn −
N−1∑

n=M−1

anBn

= aNBN − aMBM−1 −
N∑

n=M

(an+1 − an)Bn.

1.19 For
∑
nzn, the terms do not converge to 0. For

∑
zn/n2, absolute convergence

implies convergence. For
∑
zn/n, use 1.14 with an = 1/n and bn = zn, and hence

Bk = z−zk+1

1−z .
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1.21 Absolute convergence renders the summation order immaterial.

a. For each n ∈ N,
z2n

1− z2n+1 =
∞∑
k=0

z2n+2n+1k

For each m ∈ N, m = 2n × p for some n ∈ N, p odd, and the representation is
unique. Thus,

z

1− z
=

∞∑
m=1

zm =
∞∑
n=0

∞∑
k=0

z2n+2n+1k =
∞∑
n=0

z2n

1− z2n+1 .

b. As in (a), we would like to show
∑

k≥0

∑
`≥1 2k(−1)`+1z2k` =

∑
n≥1 z

n. It
suffices to show ∑

k≥0,`≥0,2k`=n

(−1)l+12k = 1.

Let n = 2pq, where q is odd. Then∑
k≥0,`≥0,2k`=n

(−1)l+12k =
∑

0≤k≤p

2k(−1)2p−kq+1

= 2p −
∑

0≤k≤p

2k...pull out term p, note the sign

= 1

1.22 Suppose not. Then z
1−z =

∑n
1

zai

1−zdi on the unit disc, and by identity theorem, the

whole complex plane (as meromorphic functions). RHS has a pole at the e2πi/max di

but LHS does not. Alternatively, multiply by the product of the denominators to
obtain a polynomial equation, which has finitely many roots, and hence cannot have
the entire unit disc in the solution space.

2.10 No, uniform limits of holomorphic functions are holomorphic.

2.13 There exists at least one n such that f (n)(z) = 0 for uncountably many z’s. By
sigma-compactness and isolation of zeros, f (n) = 0.

2.15 Both f and 1/f are holomorphic. Apply maximum principle.

3.12 The residue at −u is (π cotπz)′|z=−u = −π2 csc2 πu. By L’Hopital’s rule, the residue
at n is 1

(u+n)2
. It remains to show the integral converges to 0. It suffices to show

cotπz is bounded on the contours by a uniform constant.

Let M = 1/4. Then e2πM > 2. For |y| ≤ M , | cot πz| ≤ e2πM+1
e2πM−1

≤ 4. For |y| > M ,

|x| >
√
R2 −M2 > R−M > N + 1/4, so | sin πz| ≥ | sin πx cosh πy| ≥ sinπ/4, and

hence | cot z| ≤ 2 coshM csc π/4. The result then follows.

3.14 Consider the behaviour at infinity by considering f(1/z).

It is not a removable singularity, because the otherwise implies f is bounded on
B(0, 1)C , and hence on C, and hence is constant, by Liouville property.
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It is not an essential singularity because the otherwise implies the image of B(0, 1)C

is dense and hence intersects with that of B(0, 1), which, by open mapping theorem,
is open.

By comparing the Taylor series of f(z) and f(1/z), it is a polynomial. Fundamental
theorem of algebra implies f is in fact linear.

3.16 Rouche’s theorem (roughly) says if the difference of two functions is small on the
boundary, then it they have the same number of zeros. Let L = supB(0,1) |g|, and
for ε = 0 and r = 1, define

M r
ε = min

∂B(zε,r)
|fε| > 0 (1)

For (a), for ε < M1
0/(2L), the difference εg of fε from f = f0 is smaller than f in

modulus on ∂B(0, 1), hence fε has a unique zero just as f does.

For (b), fix a small ε0 and a small η > 0. (a) implies (1) holds for ε0 and 0 < r <
1− |zε|. Then for |ε− ε0| < Mη

ε0
/(2L), zε ∈ B(zε0 , η). Continuity then follows.

Alternatively, by the generalized argument principle, for holomorphic f and g,
∫

Γ
g ·

(f ′/f) =
∑
g(zi), where zi’s are zeros of f enclosed in Γ, zε = 1

2πi

∫
∂B(0,1)

z(f +

εg)′/(f + εg), which is holomorphic in ε.

Alternatively, apply Implicit function theorem. Upon checking Cauchy-Riemann
equation, this shows z 7→ zε is holomorphic as well.

3.17 The image of the unit disc is open by open mapping theorem, and is relatively closed
in the unit disc by compactness of the closed unit disc (f(∂B) ⊆ ∂B is used here).
By connectedness, it suffices to show f has a zero. This can be done by applying
maximum principle on (a) f and 1/f , (b) 1/f .


