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In this tutorial, higher order multivariable partial derivatives are used to study the Lapla-
cian operator.

Definition 1. Let Ω be an open set in Rn. For u : Ω → R with continuous second
derivatives, define the Laplacian of u by

∆u =
n∑
i=1

Diiu = D11u+ ...+Dnnu

Example 2. Let Ω = R2 \ {0} and ϕ(x, y) = log
√
x2 + y2. Then ∆ϕ = 0.

Proof.

ϕx(x, y) =
x

x2 + y2

ϕxx(x, y) =
y2 − x2

x2 + y2

By symmetry ϕyy(x, y) = x2−y2
x2+y2

. Therefore, ∆ϕ(x, y) = y2−x2
x2+y2

+ x2−y2
x2+y2

= 0.

The Laplacian describes the average deviation u(x) from u(x0) for x near x0, as can be
seen from the formulation below.

Proposition 3.

∆u(x) = lim
h→0

2n

h2
[( 1

2n

∑
σ∈{1,−1}
1≤i≤n

u(x+ σhei)
)
− u(x)

]

Proof. It suffices to show the equivalent expression

∆u(x) = lim
h→0

1

h2

∑
[(u(x+ hei)− u(x)) + (u(x− hei)− u(x))]

By the definition of partial deriviatives, this boils down to showing the following equation
for single-variable functions v

v′′(x) = lim
h→0

1

h2
[(v(x+ h)− u(x)) + (u(x− h)− u(x))]

which indeed holds by L’Hopital’s rule.
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Functions whose Laplacian vanishes identically are said to be harmonic. ϕ as defined
in Example 2 is harmonic. Harmonic functions are useful in physics, chemistry and
ecology because they describe the equilibrium distribution of such quantities as heat,
concentration and population.

Proposition 4. ϕ is the only symmetric (the function value is a function of the norm)
harmonic function on the plane, up to scaling and translation.

Proof. Let ψ(x) = v(|x|) be a symmetric harmonic function on the plane.

Diiψ(x) = Di

[
v′(|x|) xi

|x|

]

=
(v′′(|x|) x

2
i

|x| + v′(|x|))|x| − v′(|x|) x
2
i

|x|

|x|2

=
(v′′(|x|)|x| − v′(|x|))x2i + v′(|x|)|x|2

|x|3

Summing gives

∆ψ(x) =
(v′′(|x|)|x| − v′(|x|)) + 2v′(|x|)

|x|
=
v′′(|x|)|x|+ v′(|x|)

|x|

Harmonicity implies rv′′(r)+v′(r) = 0. Observe that left-hand side is (rv′(r))′, and hence
rv′(r) = C1. Since v′(r) = C1/r, integrating gives v(r) = C1 log r + C2, and the result
then follows.

Remark. This proof can be generalised to determine symmetric harmonic functions on
any dimension.

Harmonicity is a very rigid notion, in the sense that there are not too many harmonic func-
tions; once certain properties are specified, for instance, symmetry as in the proposition
above, the harmonic function may be uniquely determined. The rigidity of harmonicity
can also be seen from Theorem 6 and 7. The maximum principle, which can be used to
prove these results, is interesting and useful per se.

Theorem 5. [Maximum principle] Suppose u is harmonic on B(0, 1) and is continuous
up to the boundary. Then u attains its maximum on the boundary, i.e. there exists an
x0 on the boundary such that for every x ∈ B(0, 1), u(x) ≤ u(x0).

Proof. later.

Theorem 6. Suppose u is harmonic on B(0, 1) and is continuous up to the boundary. If
u vanishes on the boundary, then it is identically 0.

Proof. Maximum principle implies the maximum is attained on the boundary, and hence
the maximum is 0. However, the same argument applied on −u shows the minimum is
−0 = 0. Therefore, u is identically 0.
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Corollary 7. Let f : B(0, 1) → R and φ : ∂B(0, 1) → R be given. Then the following
equation has at most one solution.{

∆u = f on Ω
u = φ on ∂Ω

Proof. Let u and v be two solutions, it suffices to show that u = v. then u−v is harmonic
on Ω and vanishes on the boundary. The above theorem shows u − v = 0, and hence
u = v.

proof of Theorem 5 (Maximum principle). By single-variable calculus, the proposition is
true if ”harmonic” is replaced by ”functions with strictly positive Laplacian”, because
the second derivative along each coordinate axis direction at an internal maximum is
nonpositive, and hence so is their sum. (Try to write out the details of the paragraph.)

Now, suppose u is harmonic. Since ∆|x|2 = 2n (n is the dimension of the space), for ε > 0,
uε(x) = u(x) + ε|x|2 has a strictly positive Laplacian, and hence it attains its maximum
on the boundary. Let M and Mε be the maxima of u and uε on the boundary. It suffices
to show M is the maximum of u on B(0, 1). Since |y|2 = 1 for y on the boundary, for x
in the interior, u(x) ≤ uε(x) ≤ Mε = M + ε. Letting ε→ 0, u(x) ≤ M . The result then
follows.
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