THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 2017-2018 semester 2 MATH2010
 week 3 tutorial

1 Curves

1.1 Formulae

For a regular curve parametrized by $\mathbf{x}(t)$ with $t \in\left(t_{0}, t_{1}\right)$, the arclength is defined by $s=\int_{t_{0}}^{t_{1}}\left\|\mathbf{x}^{\prime}\right\|$, and the curvature is defined as $\kappa=\left\|\frac{d}{d s} \frac{\mathbf{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}\right\|=\left\|\left(\frac{\mathbf{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}\right)^{\prime}\right\| /\left\|\mathbf{x}^{\prime}\right\|$.
Direct computation shows for curves of the form $r=r(\theta)$, the arclength is $\int \sqrt{r^{2}+r^{\prime 2}}$, and the curvature is $\frac{\left|r^{2}+2 r^{\prime 2}-r r^{\prime \prime}\right|}{\left(r^{2}+r^{\prime 2}\right)^{3 / 2}}$.

1.2 Examples

Archimedean spiral $(r=k \theta)$
arclength: $\frac{k}{2}\left[\theta \sqrt{\theta^{2}+1}+\log \left(\theta+\sqrt{\theta^{2}+1}\right)\right]_{\theta_{0}}^{\theta_{1}}$
curvature: $\frac{1}{k} \frac{2+\theta^{2}}{\left(1+\theta^{2}\right)^{3 / 2}}$
properties: can be used for angle trisection and circle squaring [1]
Logarithmic spiral $\left(r=k e^{a \theta}\right)[2]$
arclength: $k \frac{\sqrt{a^{2}+1}}{a}\left[e^{a \theta}\right]_{\theta_{0}}^{\theta_{1}}$
curvature: $\frac{1}{k \sqrt{1+a^{2}} e^{a \theta}}$
properties:

- infinite winding around the origin but finite length
- unique self-similar spirals
- unique curves whose tangents mark constant angles with the radial lines

Conics $r=\frac{a}{1-\varepsilon \cos (\theta-\phi)}$ (note: $(r ; \theta)$ with $r<0$ coincides with the point $(-r ; \theta+\pi)$ arclength: not elementary curvature: $\frac{1}{{ }_{a}\left[\left(\frac{\varepsilon s}{1-\varepsilon c}\right)^{2}+1\right]^{3 / 2}}$, where $s=\sin (\theta-\phi)$ and $c=\cos (\theta-\phi)$ properties:

- ε is the eccentricity of the conic. The curve is, respectively, a circle, an ellipse, a parabola, and a hyperbola if $\varepsilon=0,0<\varepsilon<1, \varepsilon=1$, and $\varepsilon>1$.
- The origin is a focus of the conic.
and one more... $r=1-\sin \theta+\frac{1}{6} \frac{|\cos \theta-\cos 3 \theta|}{\sin \theta}$
arclength: unlikely to be elementary (at least it is hopelessly tedious to solve by hand.)
curvature: $\frac{3}{2} \frac{|54-54 \sin \theta \mp 33 \cos \theta \pm 36 \sin 2 \theta-9 \cos 2 \theta \pm 9 \cos 3 \theta-\cos 4 \theta|}{(41 / 2-18 \sin \theta \mp 9 \cos \theta \pm 6 \sin 2 \theta \mp 3 \cos 3 \theta+3 / 2 \cos 4 \theta)^{3 / 2}}$, where the upper and lower signs in \pm and \mp are taken when θ lies in, respectively, the right half-plane and the left half-plane. (by WolframAlpha)

2 Topology

Can you construct a set in $\mathbb{R}^{n} \ldots$

- that is open but not closed?
- that is closed but not open?
- that is neither open nor closed?
- that is both open and closed? (try to find all such sets, if any)
- that is nonempty but has empty interior?
- that has nonempty intersection with every ball but has an empty interior?
- that has empty interior, but the interior of the complement of whose exterior is nonempty?

References

[1] Weisstein, Eric W. "Archimedes' Spiral." From MathWorld -A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesSpiral.html
[2] Weisstein, Eric W. "Logarithmic Spiral." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LogarithmicSpiral.html

