Preferential Attachment and **Evolution of Higher Dimensional Interactions**

Chunyin Siu Cornell University cs2323@cornell.edu

Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Caroline He

Agenda

- What is preferential attachment?
- What is homology?
 - Why people care?

What we know about the homology of preferential attachment complexes

Preferential Attachment

P(attaching to v) \propto degree + δ

P(attaching to v) \propto degree + δ

P(attaching to v) \propto degree + δ

P(attaching to v) \propto degree + δ

Ň JJ

P(attaching to v) \propto degree + δ

heavy tailed degree distribution [Albert and Barabasi 1999]

- heavy tailed degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- heavy tailed degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Triangles, Tetrahedra and Topology

Triangles, Tetrahedra and Topology

image credit: calm

Triangles, Tetrahedra and Topology

image credit: calm

image credit: Krishnavedala

Who cares? **Examples of academic networks**

Who cares? **Examples of academic networks**

Holes are repeated pathways. [Patania, Petri and Vaccarino 2017]

Who cares? Examples of academic networks

- Holes are repeated pathways. [Patania, Petri and Vaccarino 2017]
- Unifying concepts fill holes. [Salnikov et al 2018]

ania, Petri and Vaccarino 2017] ov et al 2018]

The Topology of the Citation Network The story of Venus

morning star paper

evening star paper

Unification merges components. Venus' citation network

discovery: both are Venus

Re-unification creates a loop. Venus' citation network

More re-unification creates more loops. Venus' citation network

Hyper-unification reduces the number of loops. Venus' citation network

Re-hyper-unification creates a cavity. Venus' citation network

betti numbers = connected component and holes = repeated higher-order connections

Betti numbers and preferential attachment

P(attaching to v) \propto degree + δ

Ň JJ

Expected Betti Number $E[\beta_q]$

Expected Betti Number $E[\beta_a]$

- $E[\beta_2] = \Theta(\text{num of nodes}^{1-4\chi})$ under mild assumptions • $\chi = 1 - \frac{1}{2 + \delta/m} \in (0, 1/2)$
 - small χ :
 - heavier degree tail
 - stronger rich-get-richer effect

Expected Betti Number $E[\beta_{a}]$

- $E[\beta_2] = \Theta(\text{num of nodes}^{1-4\chi})$ under mild assumptions • $\chi = 1 - \frac{1}{2 + \delta/m} \in (0, 1/2)$
 - small χ : heavier tail and stronger rich-get-richer effect 600
- $E[\beta_q] = \Theta(\text{num of nodes}^{1-2q\chi})$ for $q \ge 2$

Expected Betti Number $E[\beta_{a}]$

- $E[\beta_2] = \Theta(\text{num of nodes}^{1-4\chi})$ under mild assumptions • $\chi = 1 - \frac{1}{2 + \delta/m} \in (0, 1/2)$
 - small χ : heavier tail and stronger rich-get-richer effect
- $E[\beta_q] = \Theta(\text{num of nodes}^{1-2q\chi})$ for $q \ge 2$
- $E[\beta_q]$ decreases as dimension q increases
- $E[\beta_{a}]$ increases with the rich-get-richer effect

Main Idea

What's next?

- Tail of betti numbers?
- robustness and betti numbers?

Thank you

- Chunyin Siu
- Cornell University
- <u>cs2323@cornell.edu</u>