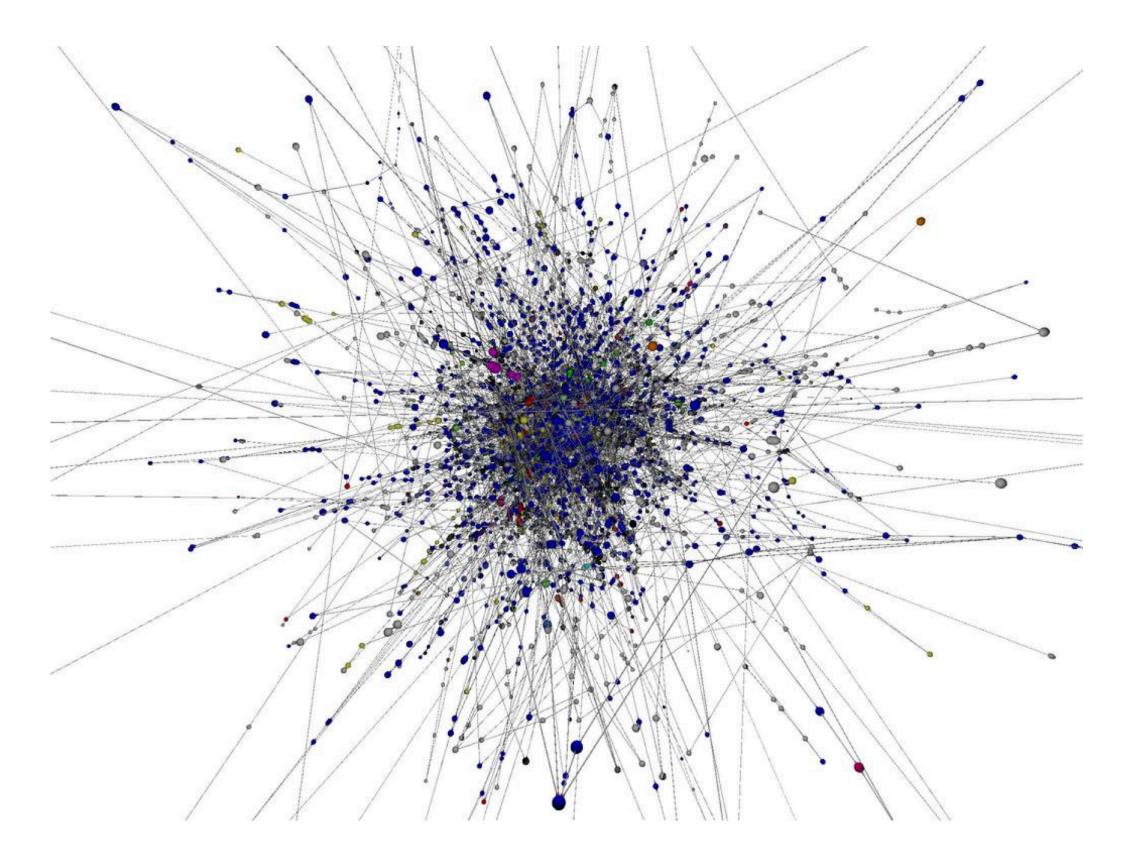
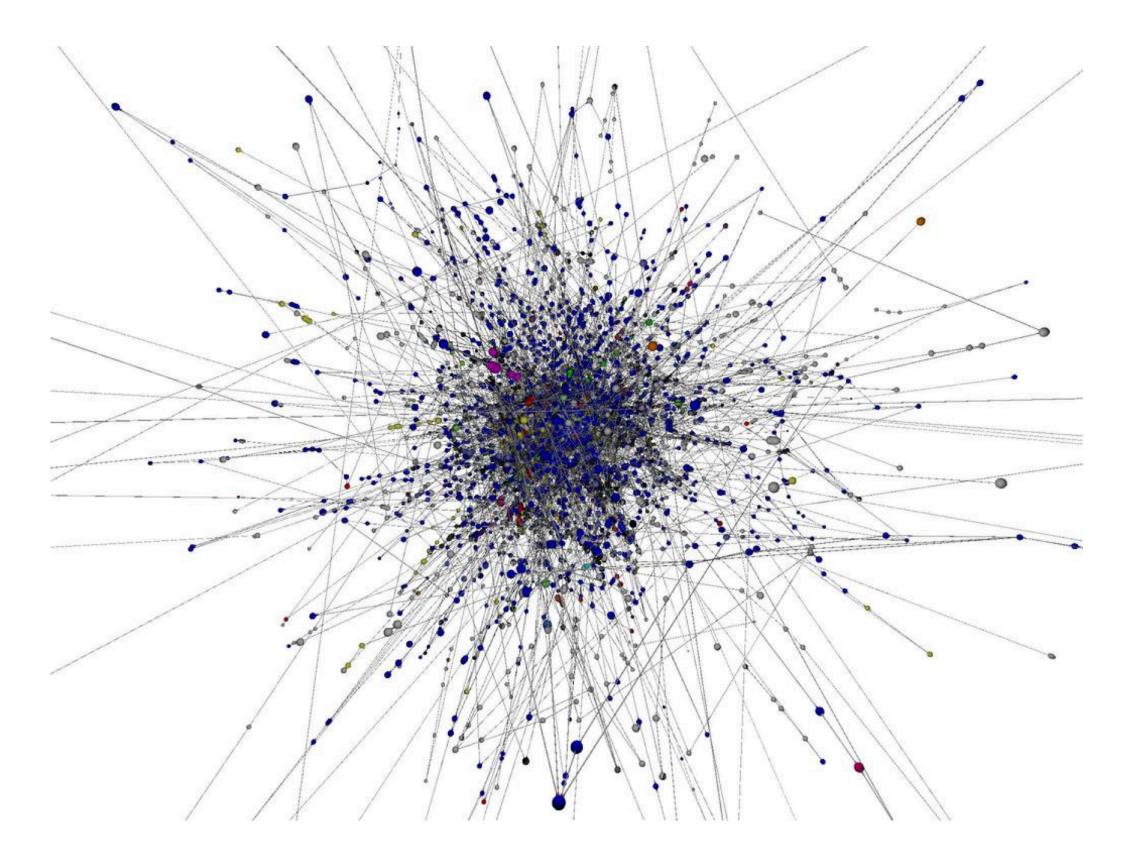
The Topology of Preferential Attachment **How Random Interaction Begets Holes**

Chunyin Siu Cornell University cs2323@cornell.edu



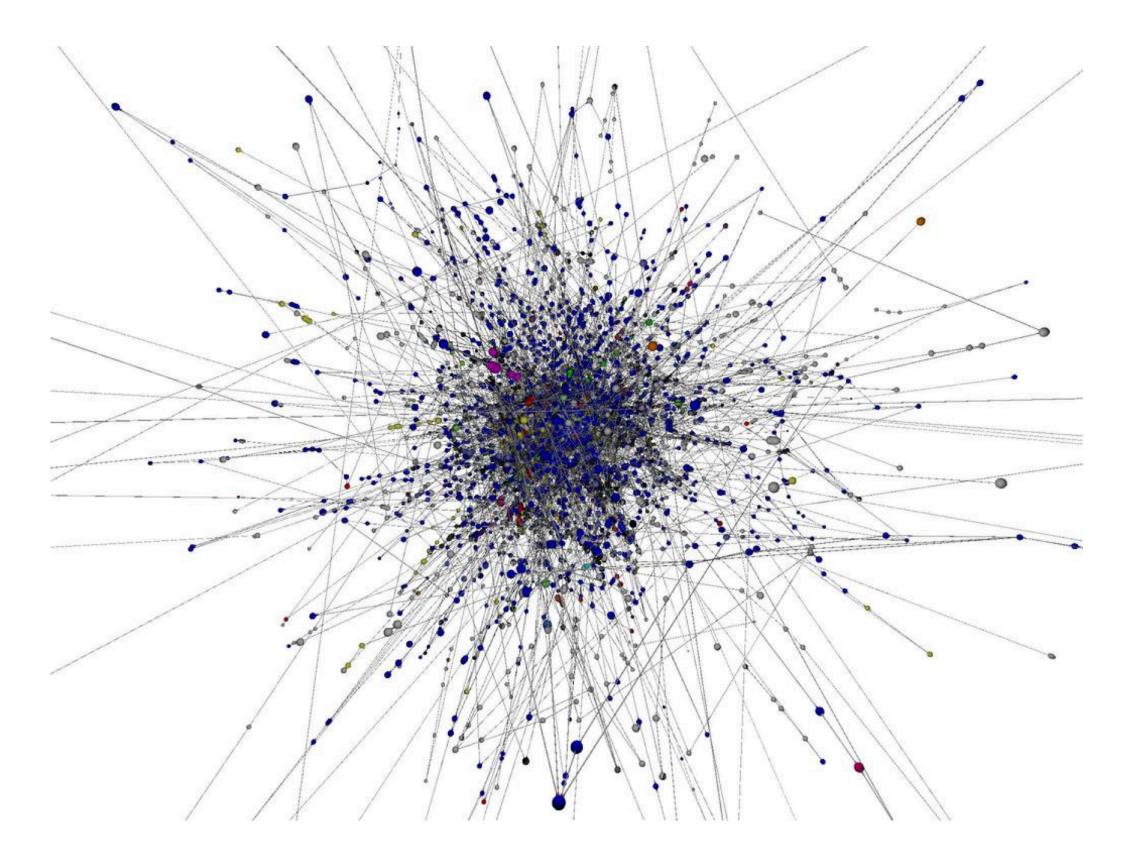
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

• Just a bouquet of circles?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

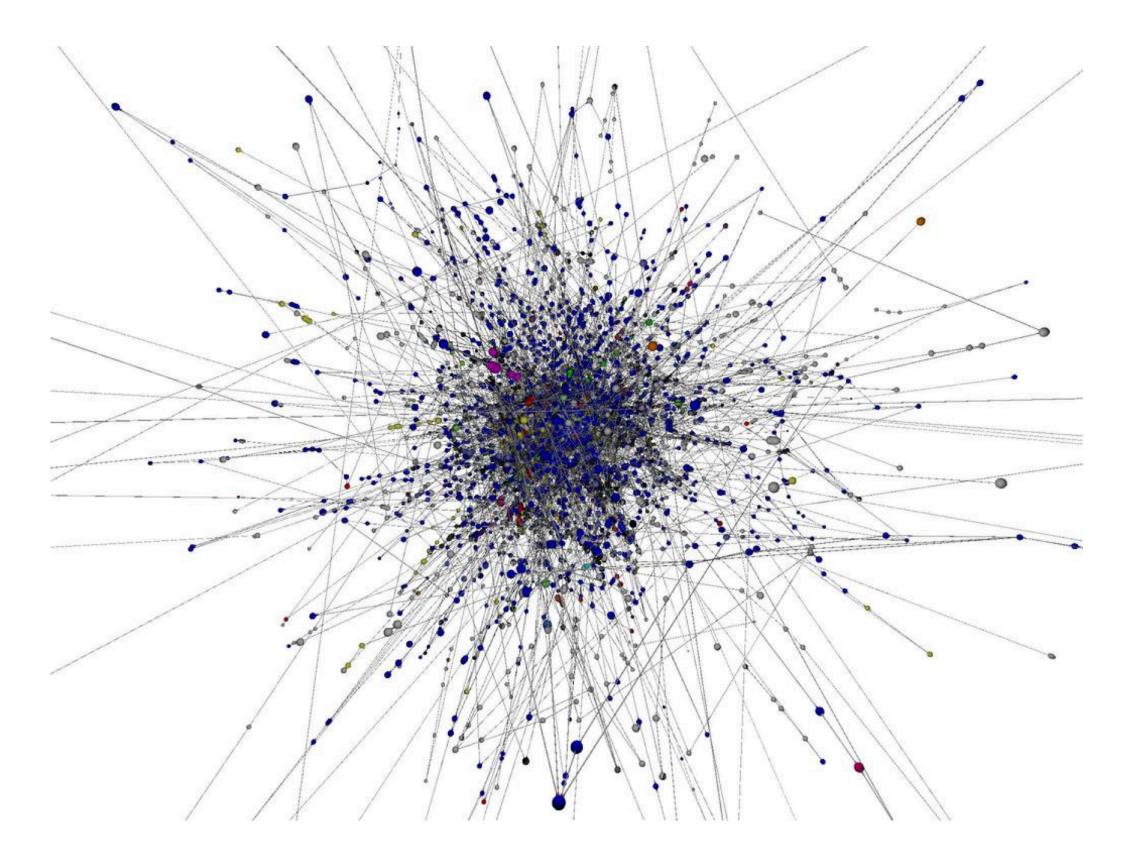
- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

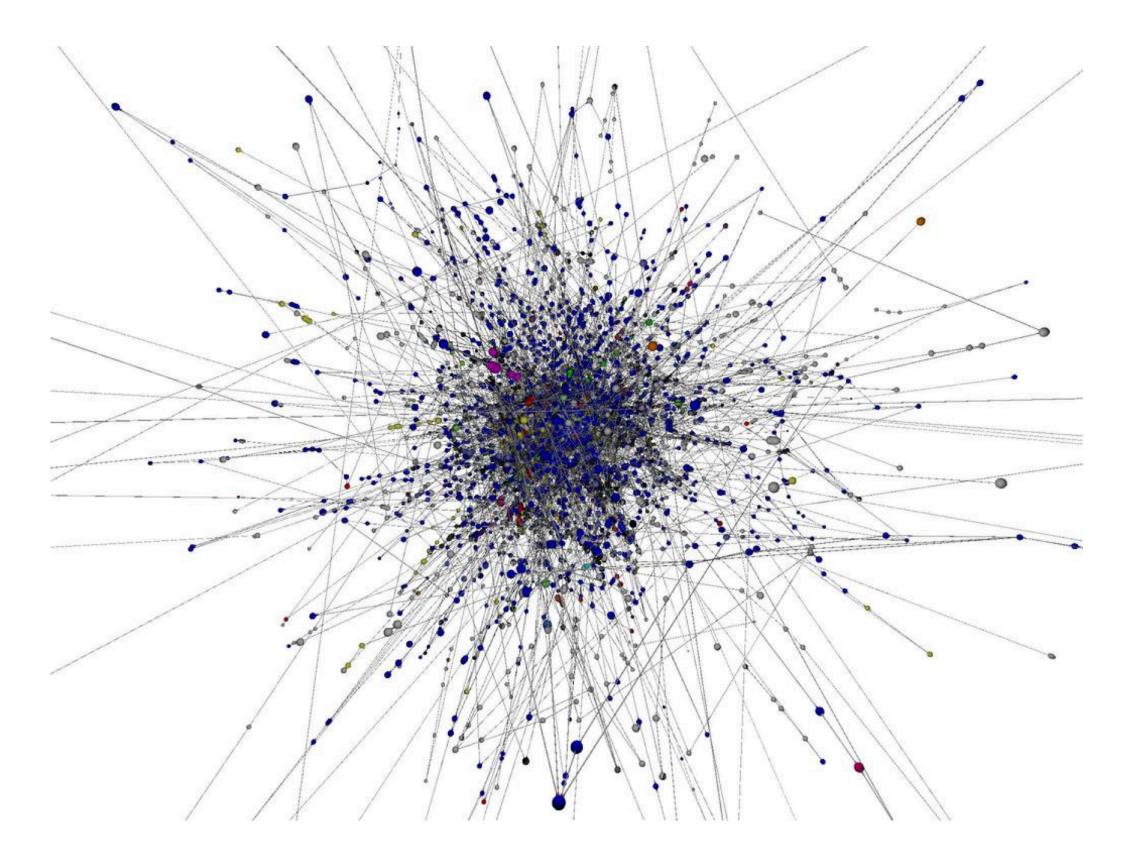
—> random topology



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

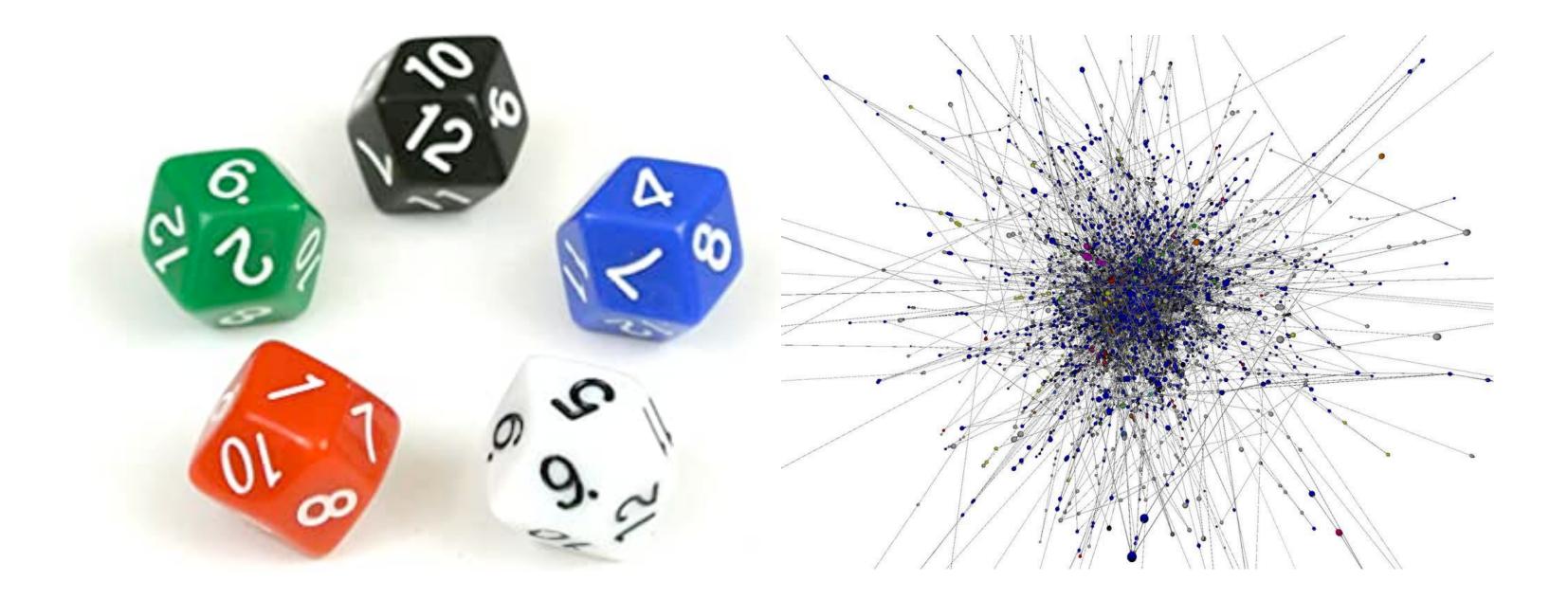
- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

- —> random topology
 - the random process of preferential attachment



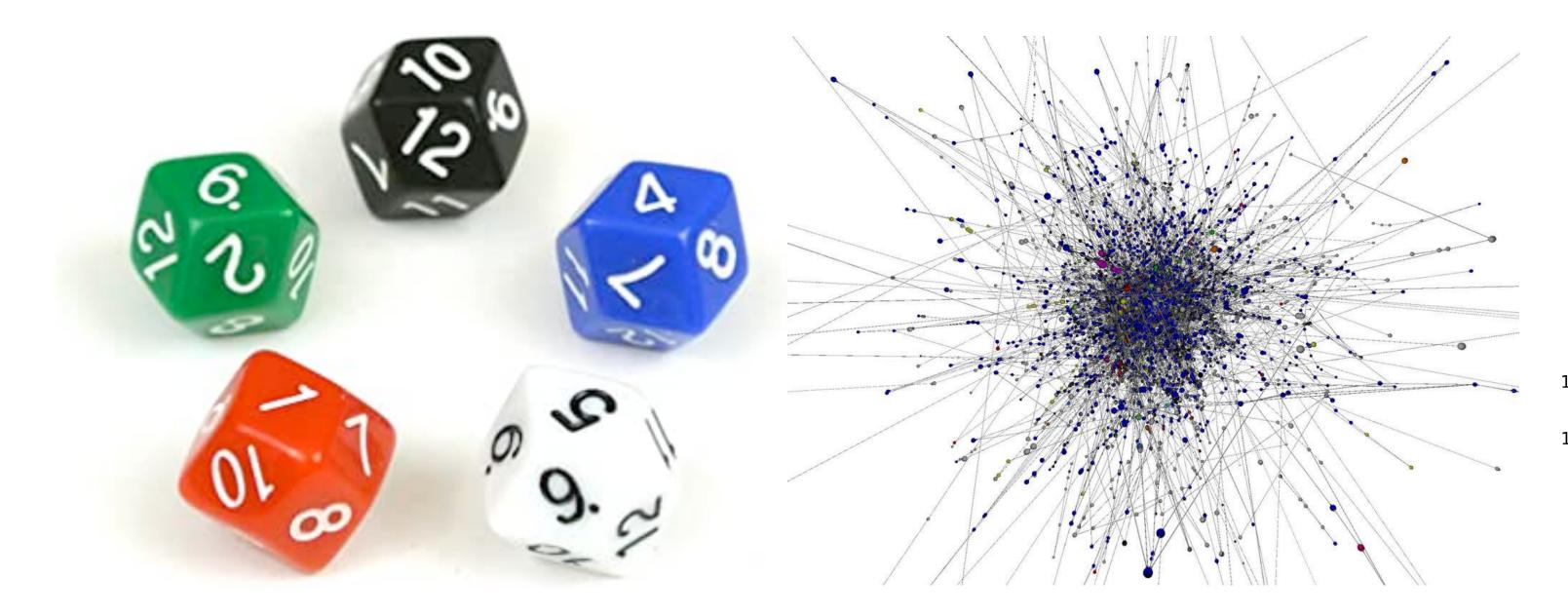
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

random topology



random topology

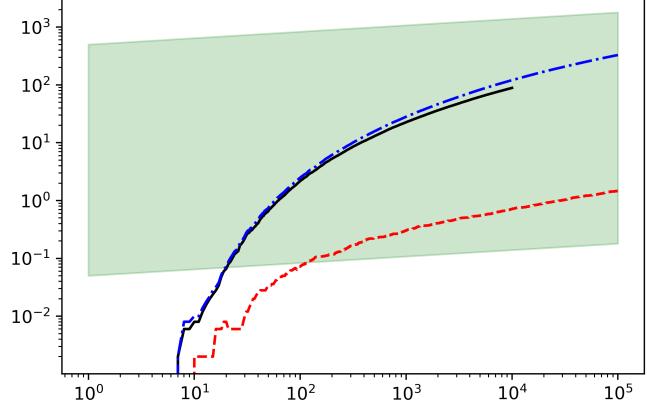
preferential attachment



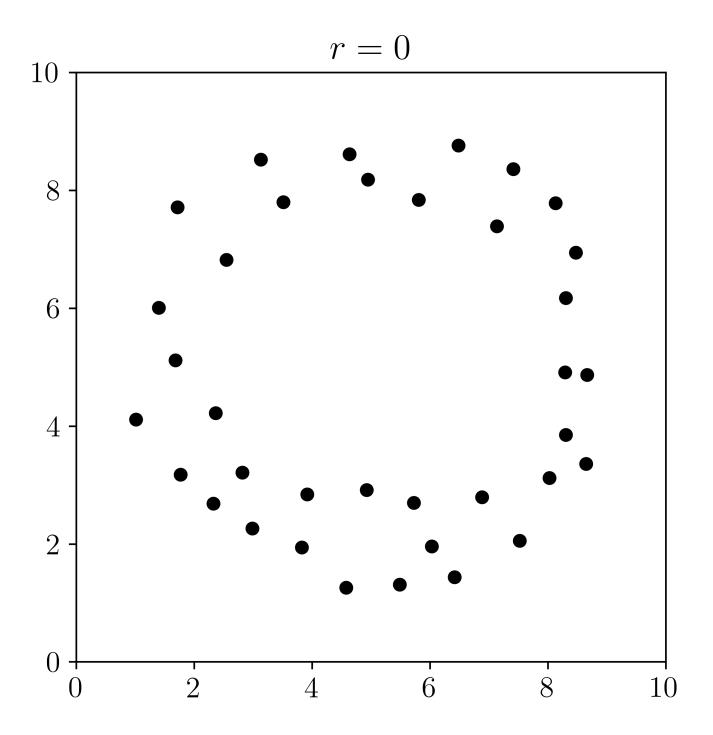
random topology

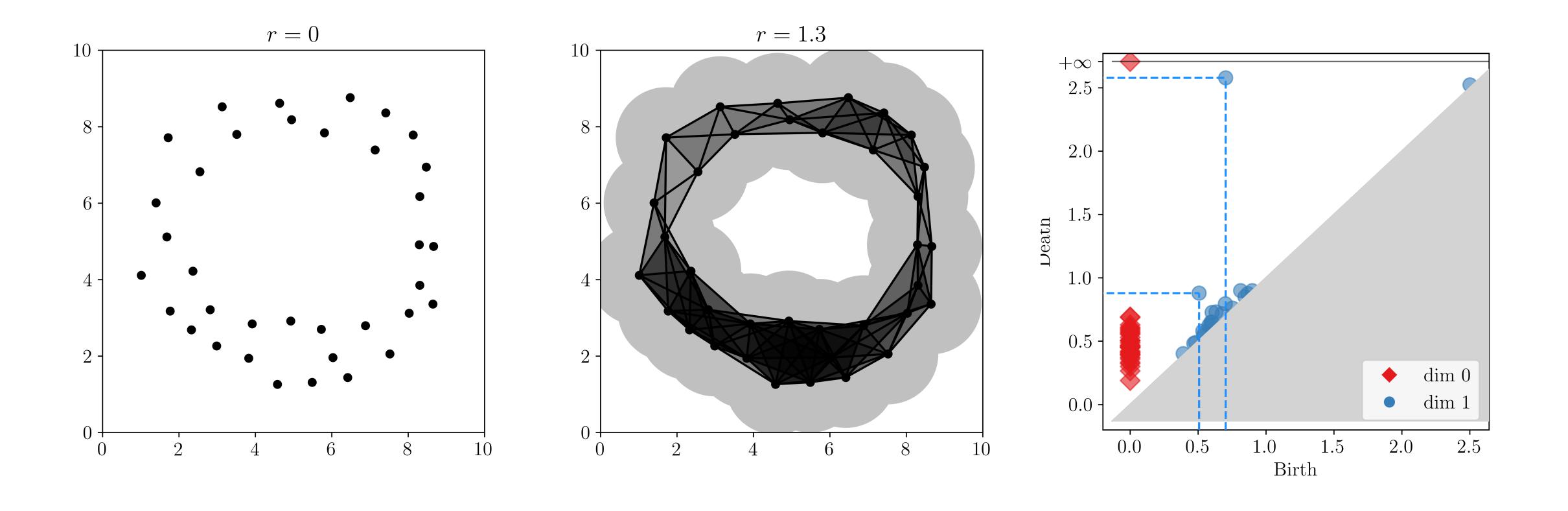
preferential attachment

our result



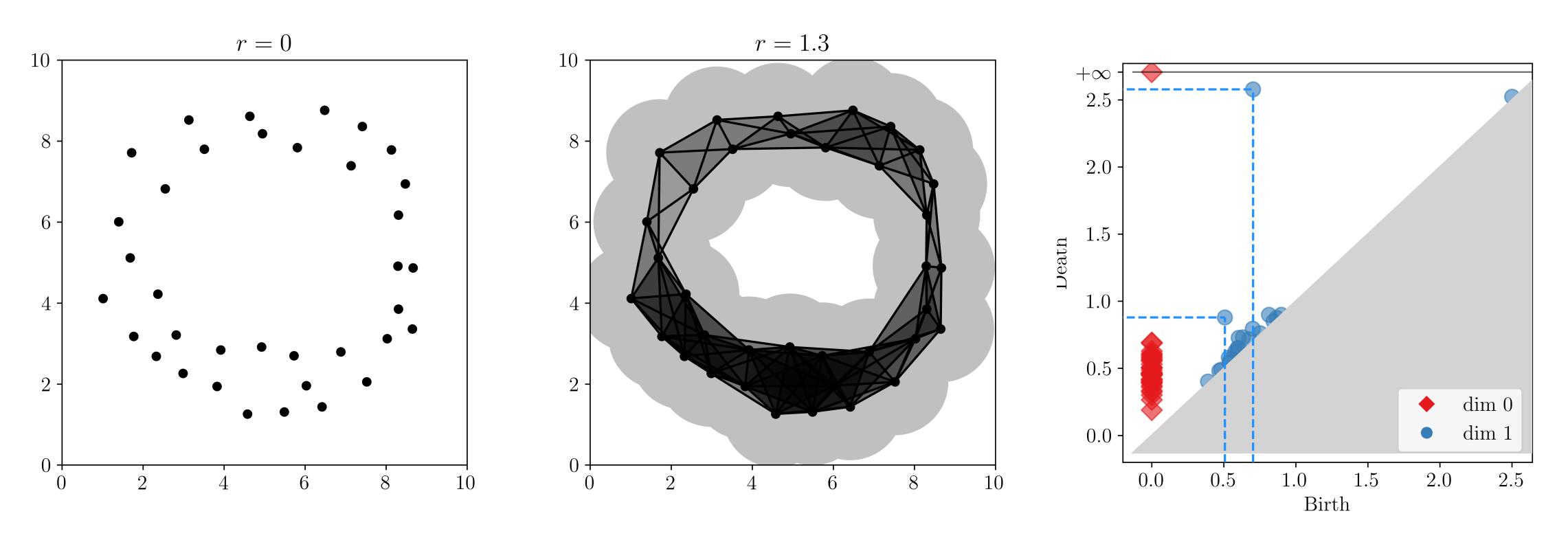
I. A Probabilist's Apology Why Random Topology



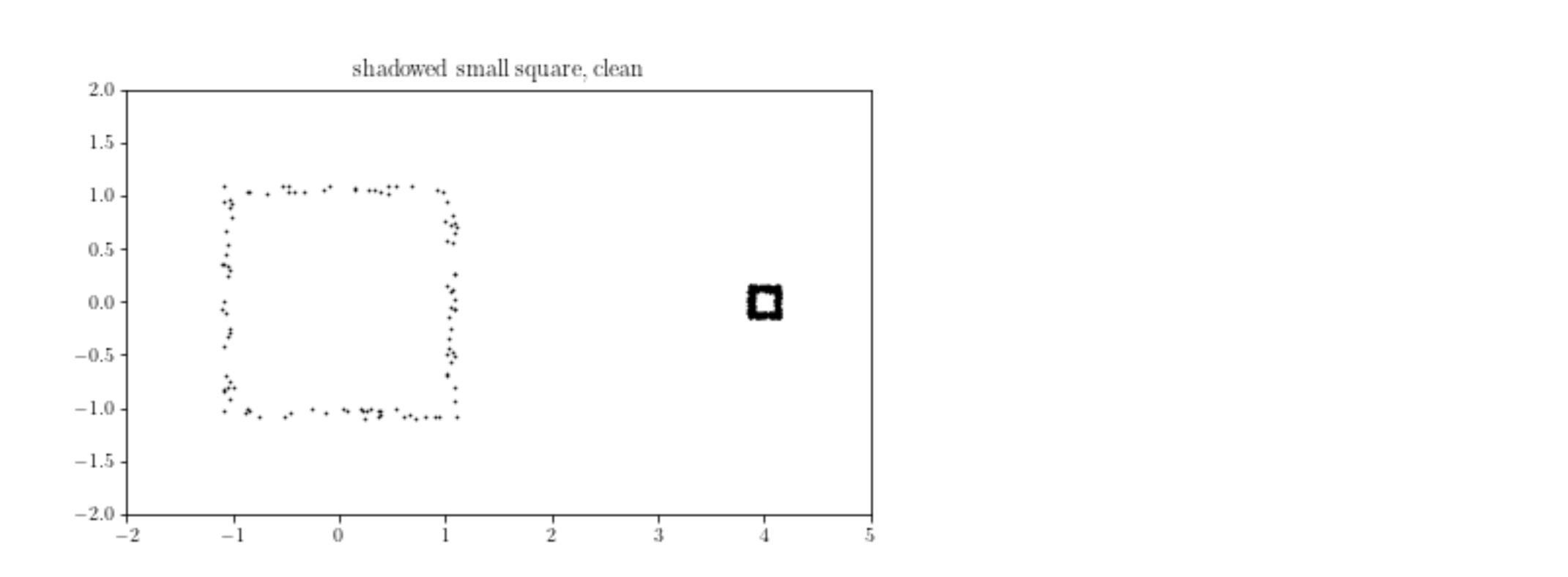


plots generated by Andrey Yao

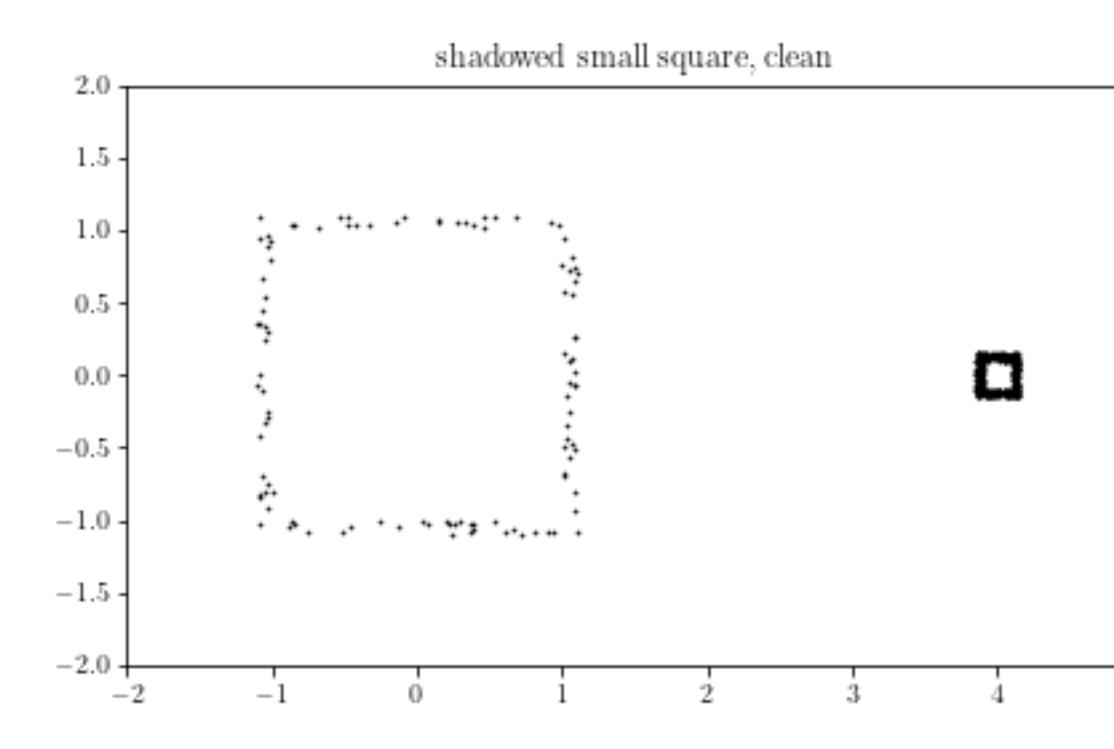
Size is Signal

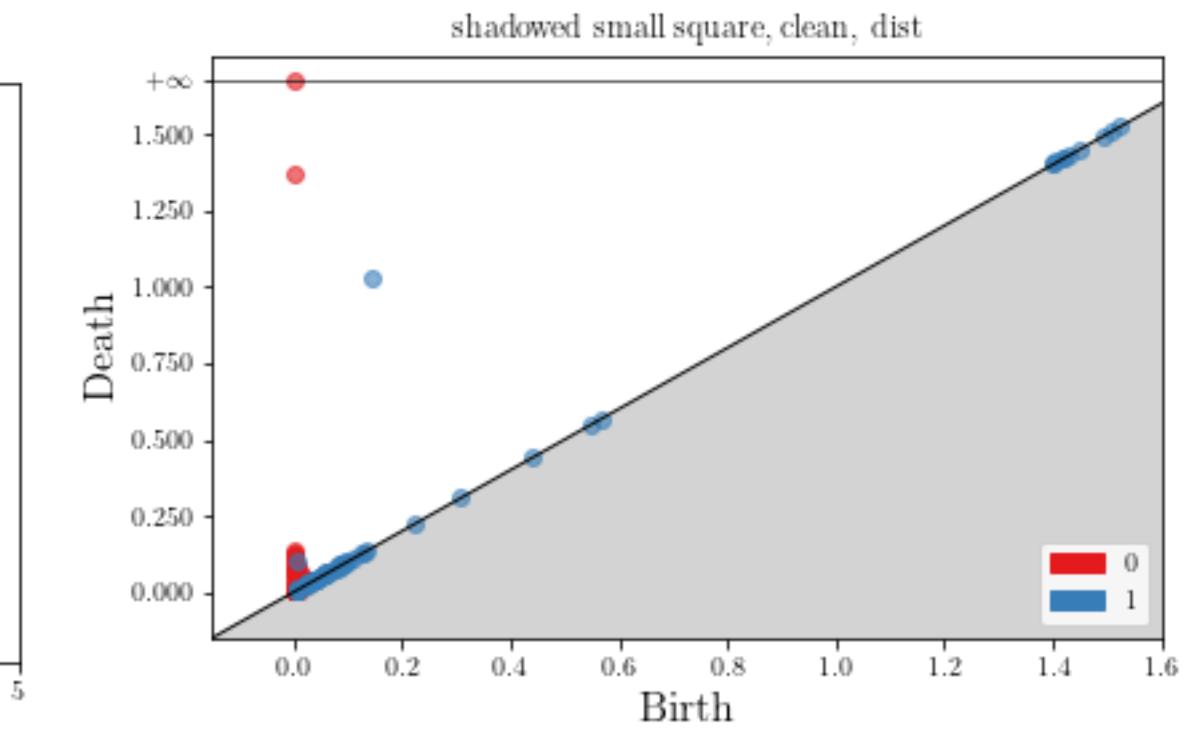


Or is it?



Or is it?

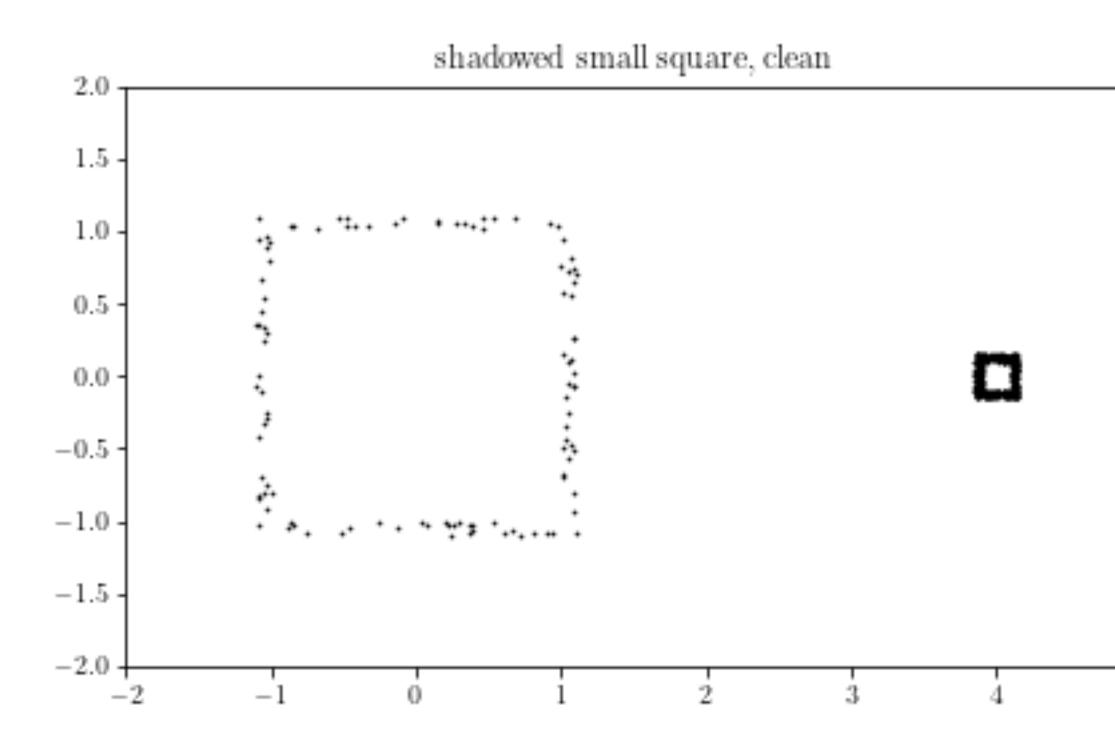


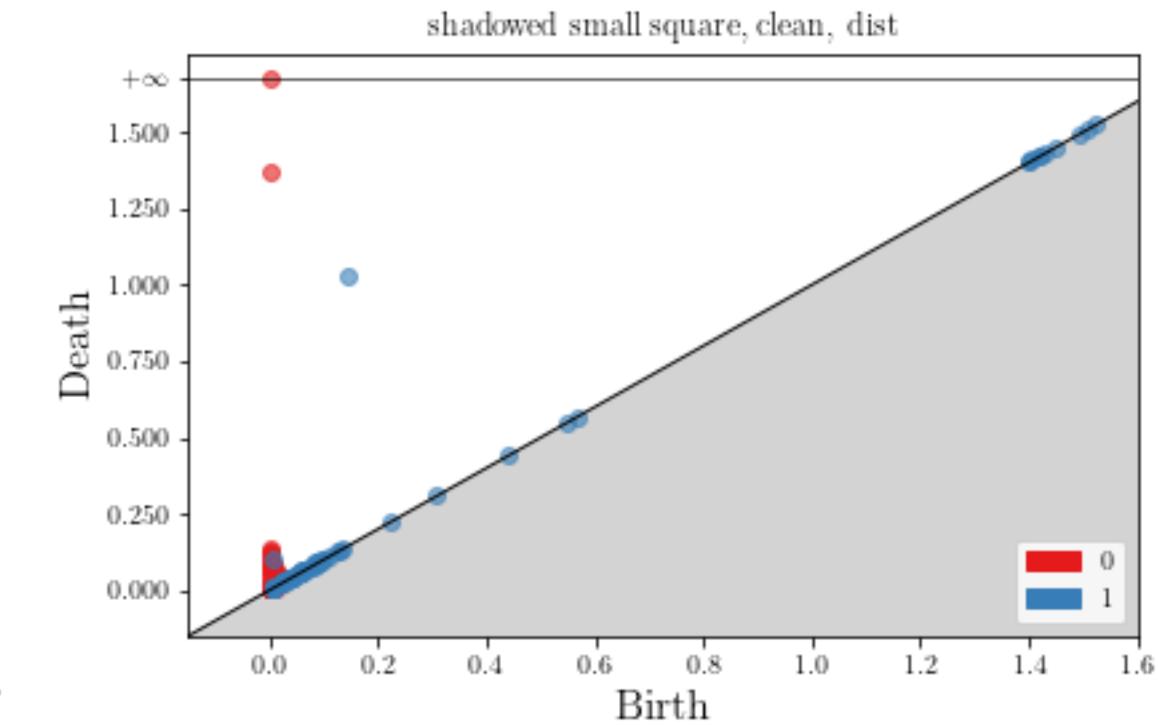


Size is Signal?

Surprise Size is Signal.

Random points don't do that.



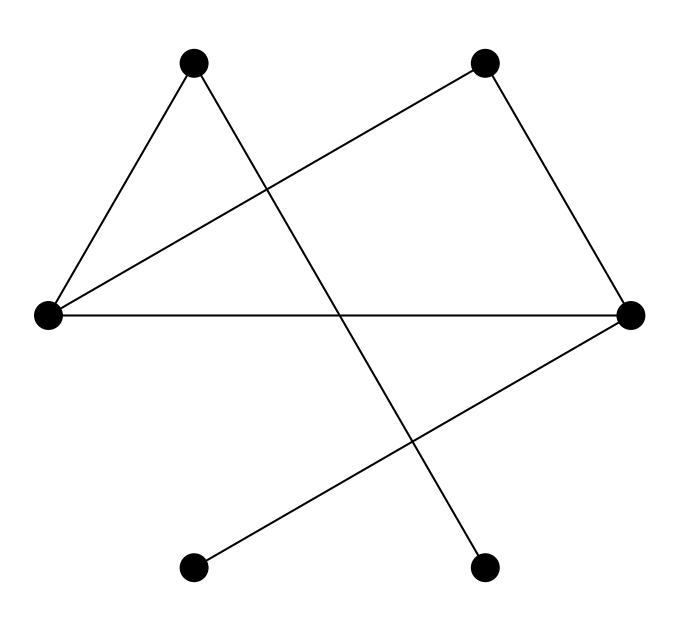


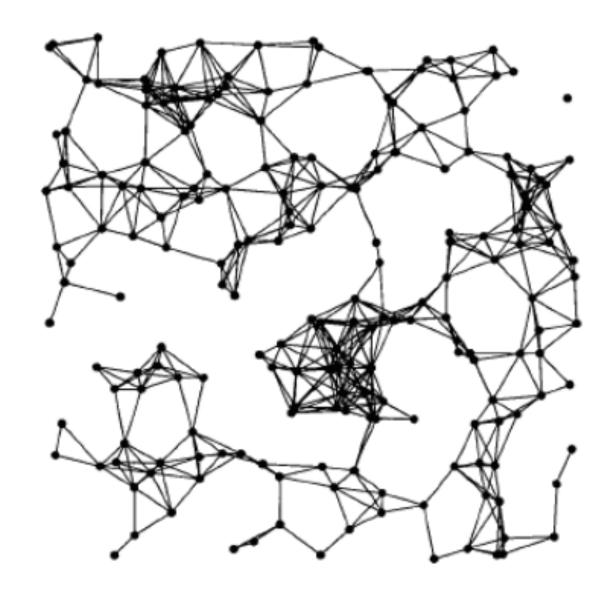
Signal is what is not random.

Signal is what is not random. So what is random?

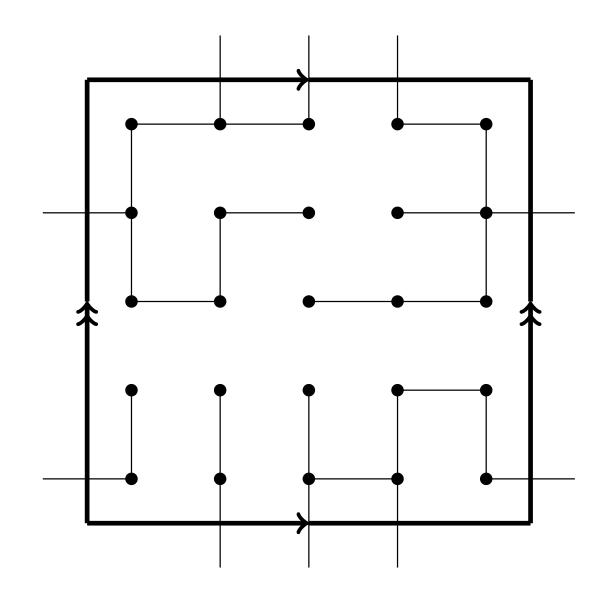
II. Random Walk in the Literature What Random Topologists Already Know

Tapas de Random Topology



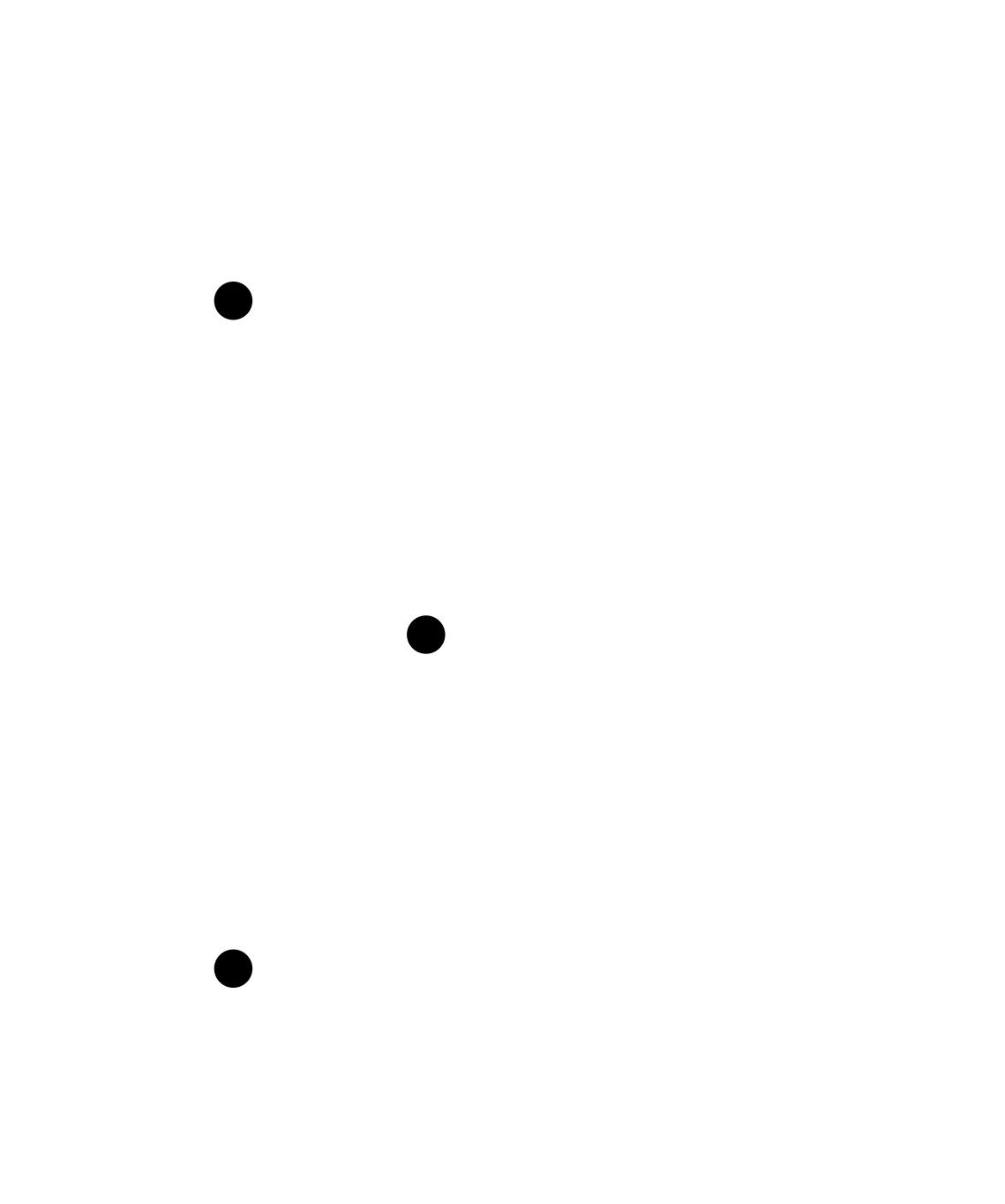


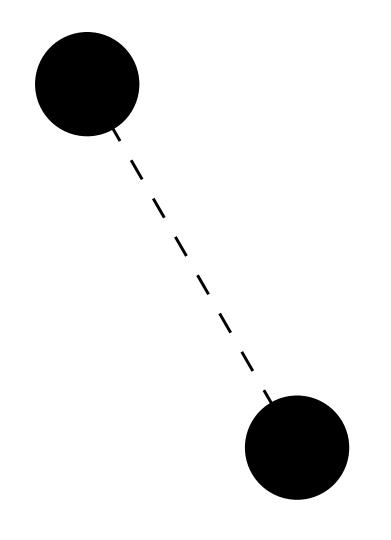
Erdo-Renyi Complexes

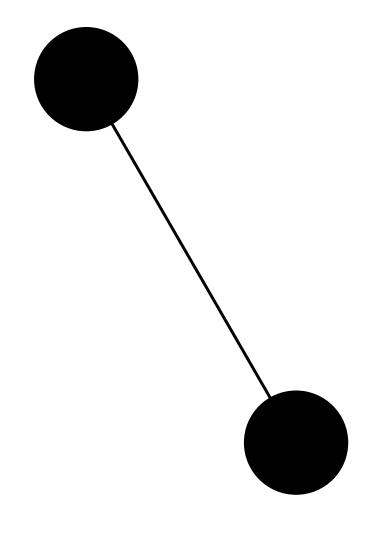


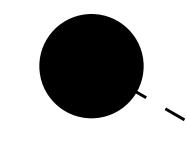
Geometric Complexes

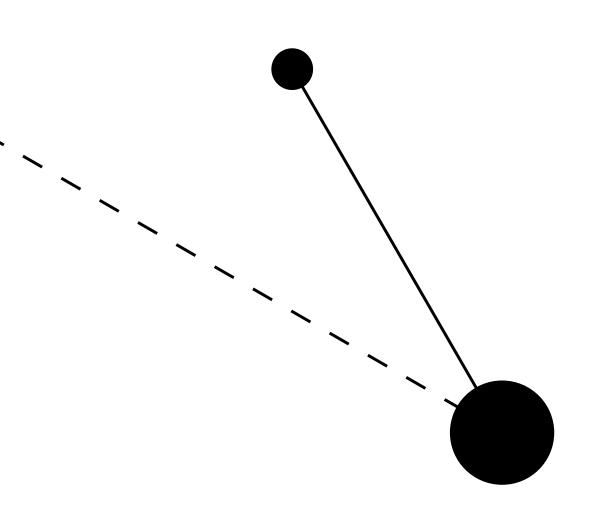
Topological Percolation

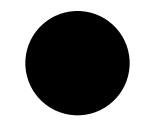


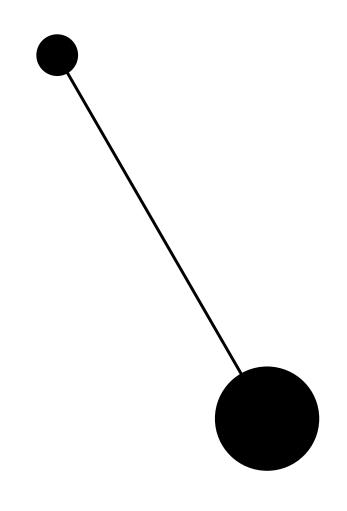


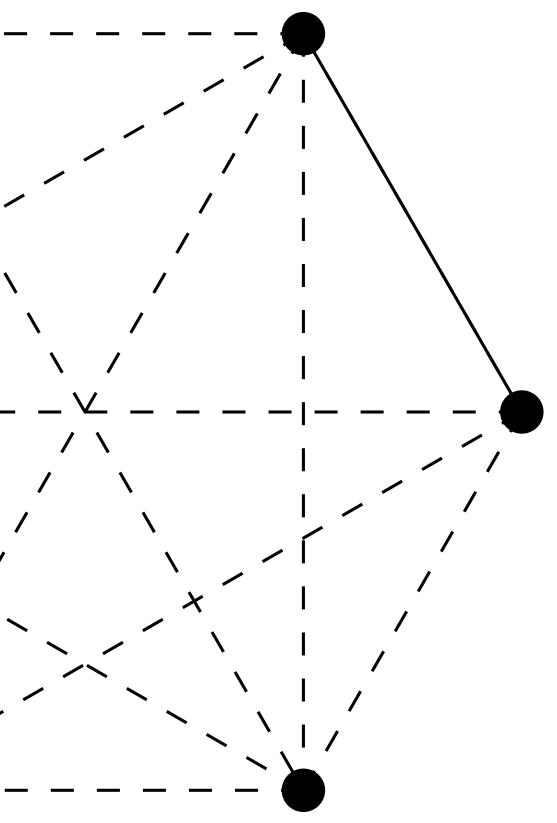


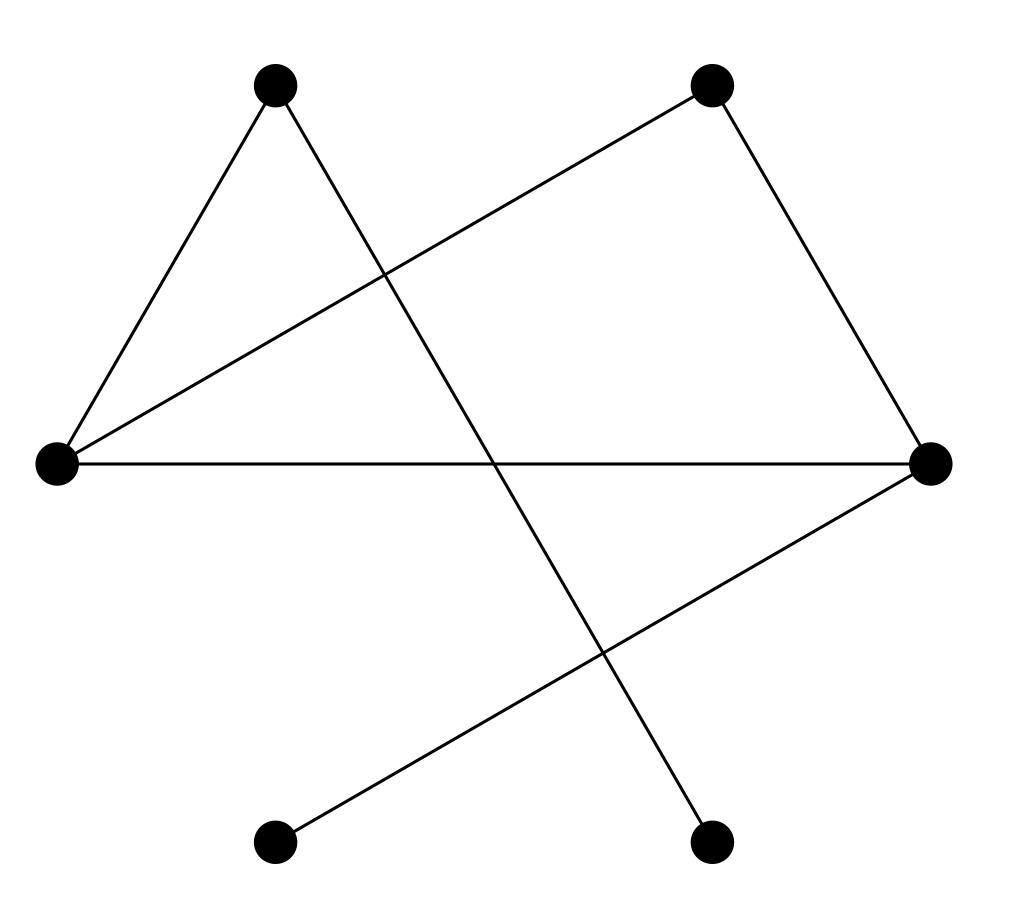


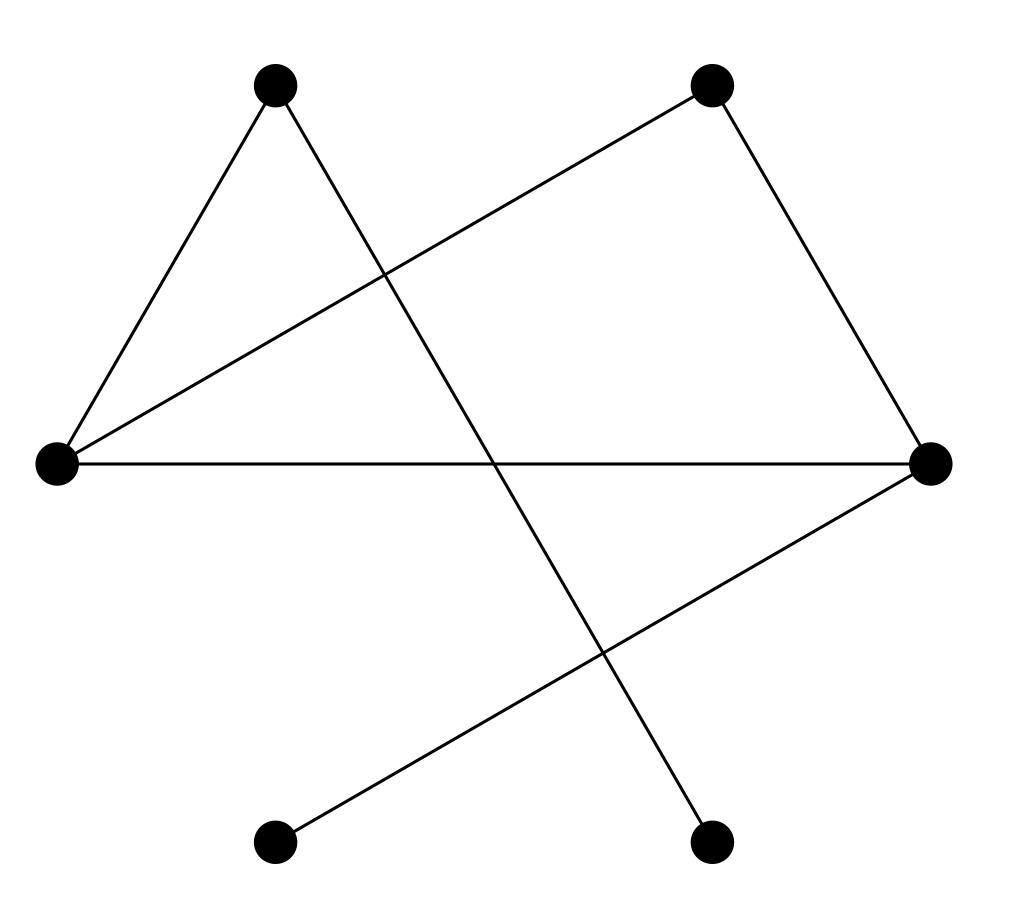












Phase Transition [Erdos-Renyi 1960]

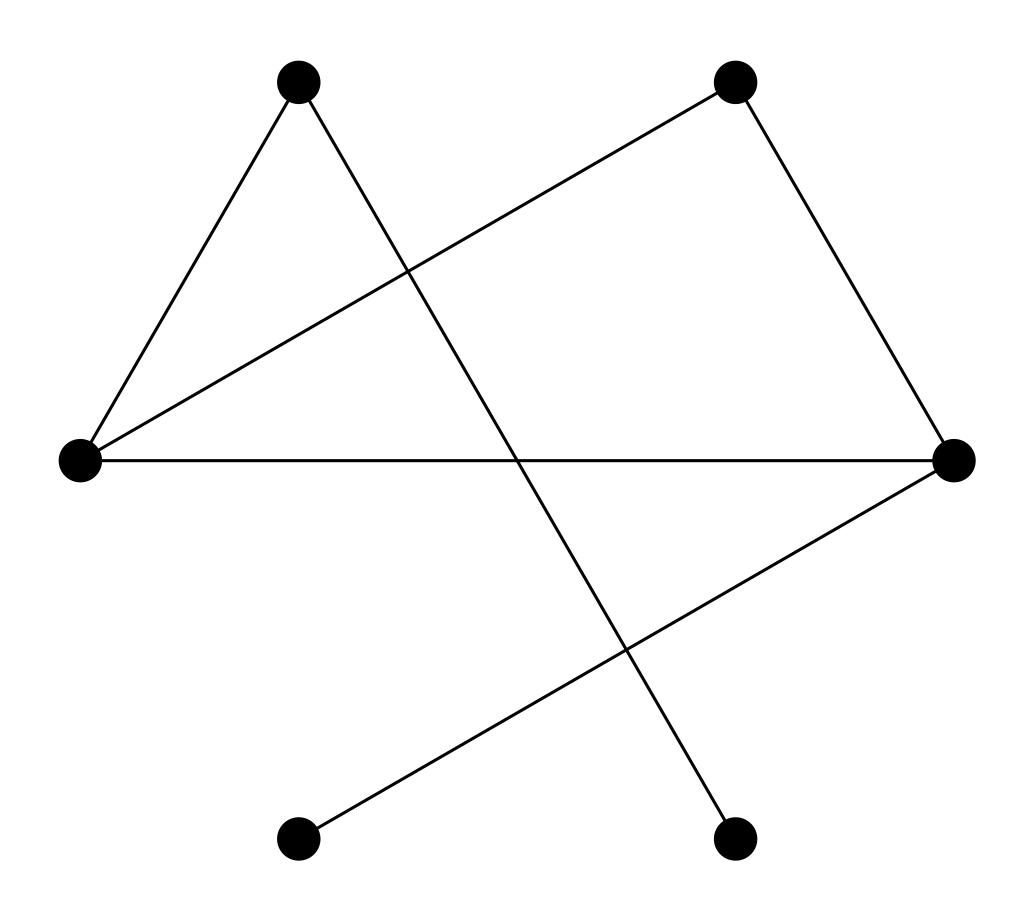
many components w.h.p.

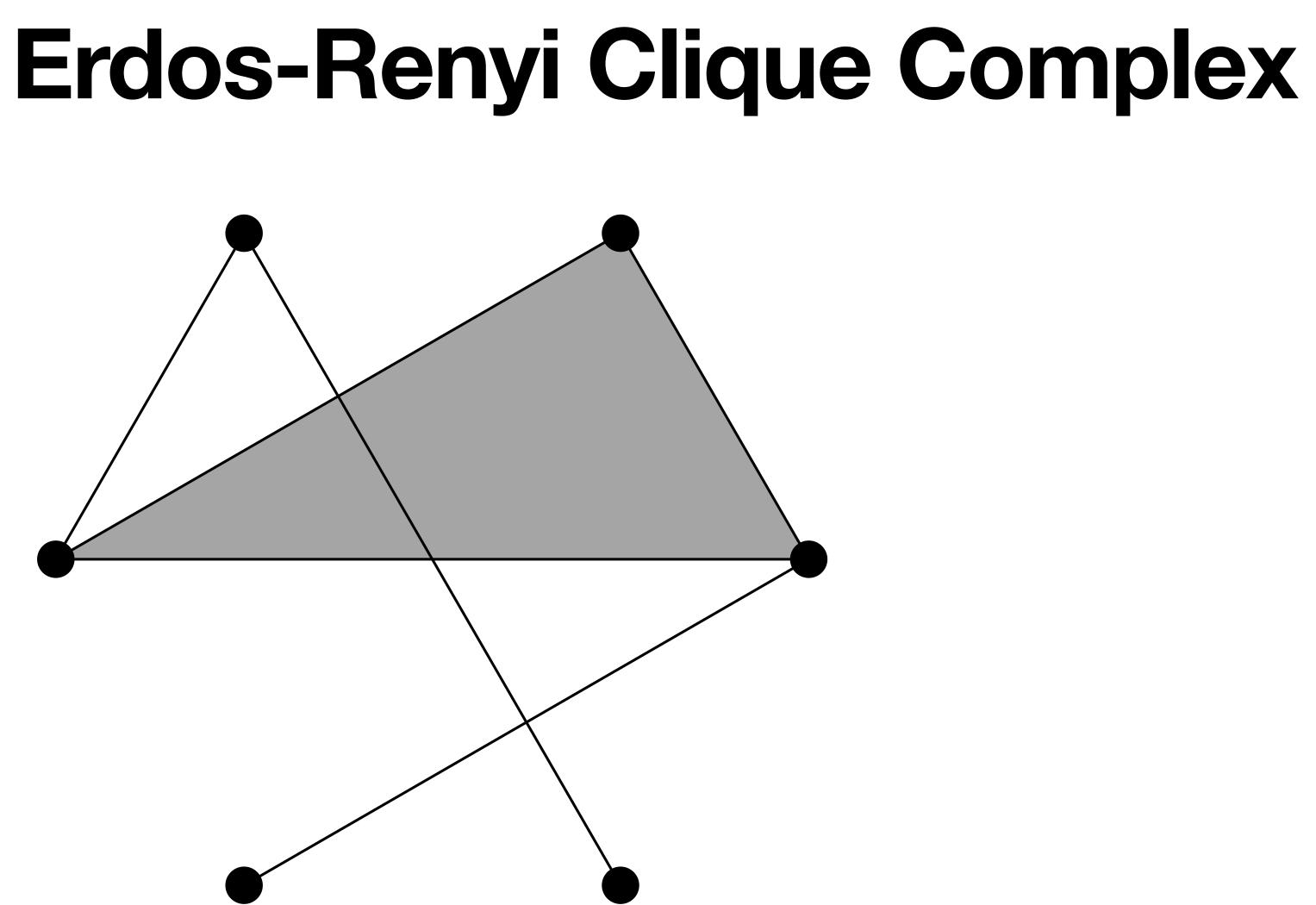
0

connected w.h.p.

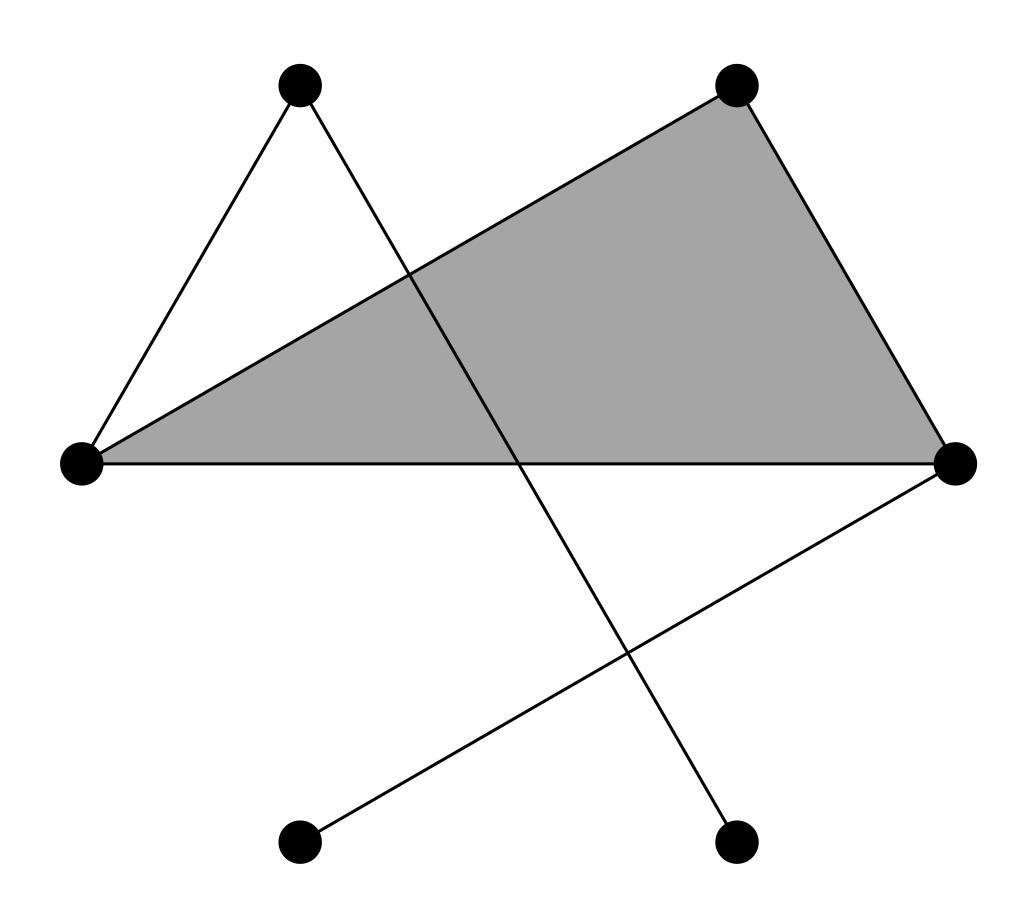
pall log terms and constants forgone

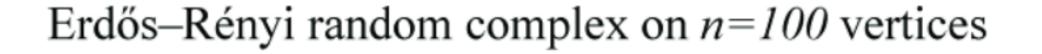
Erdos-Renyi Clique Complex

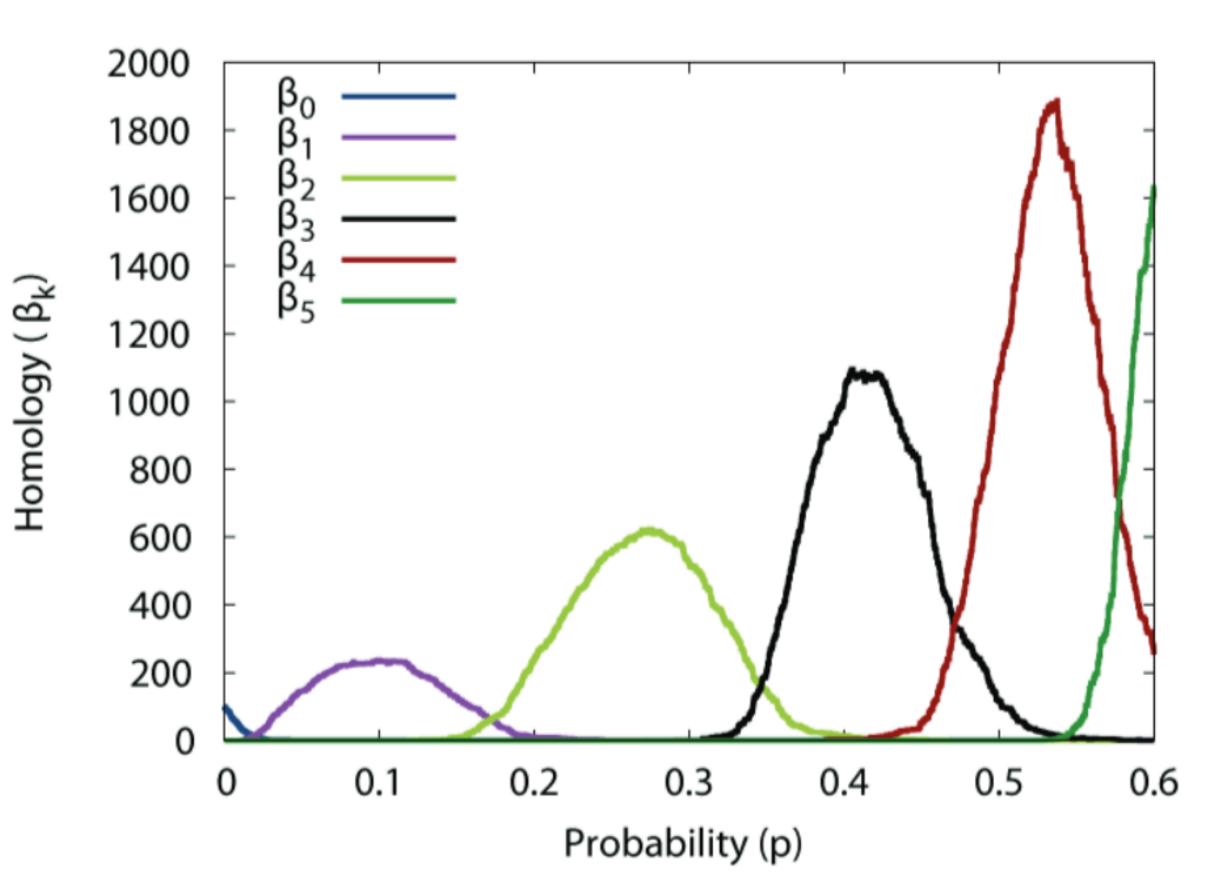




Betti Numbers







computation and plotting done by Zomorodian

Phase Transition [Erdos-Renyi 1960]

0 many components w.h.p.

connected w.h.p.

 $\frac{1}{n}$

all log terms and constants forgone

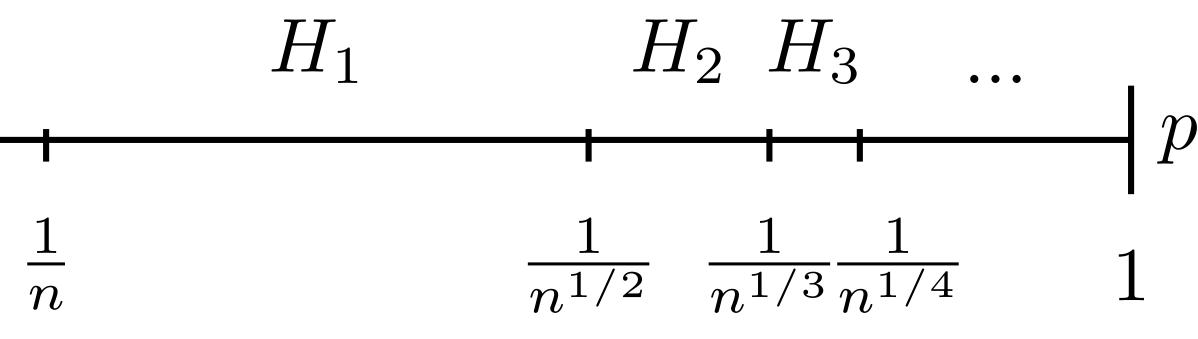
p

1

Phase Transition [Kahle 2009, 2014]

H_0

0 many components w.h.p.

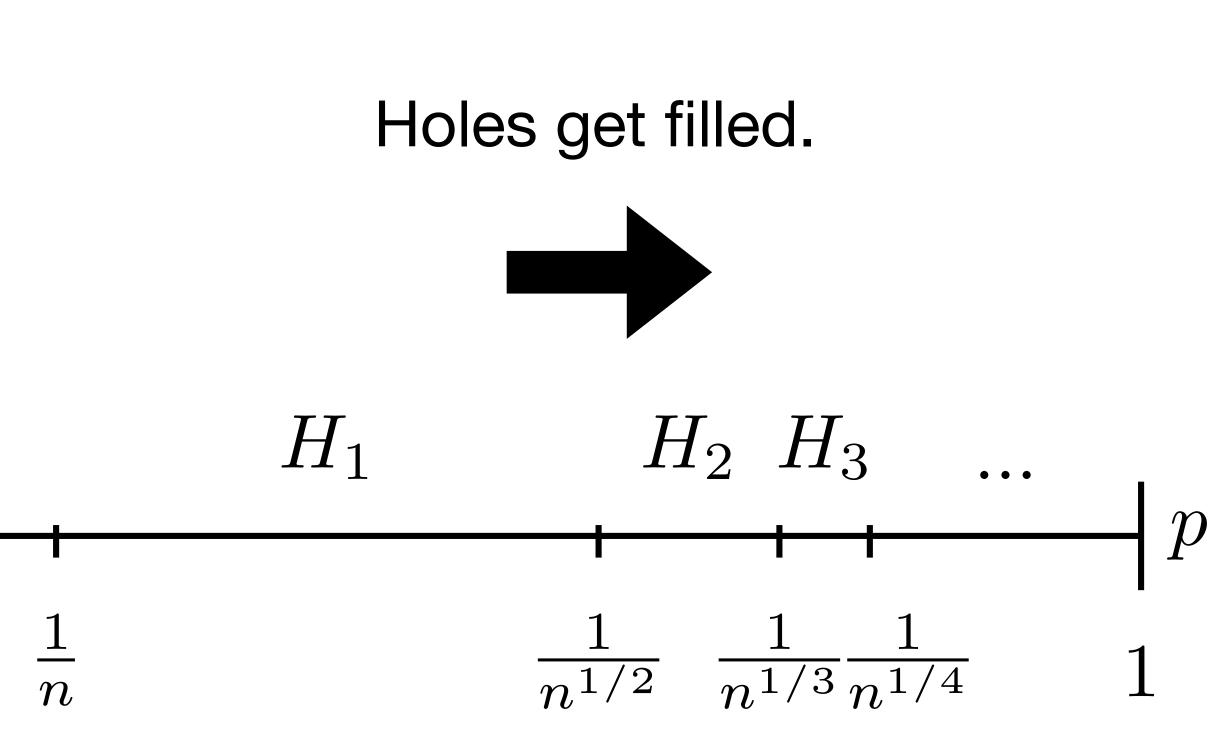


all log terms and constants forgone

Phase Transition [Kahle 2009, 2014]

H_0

0 many components w.h.p.

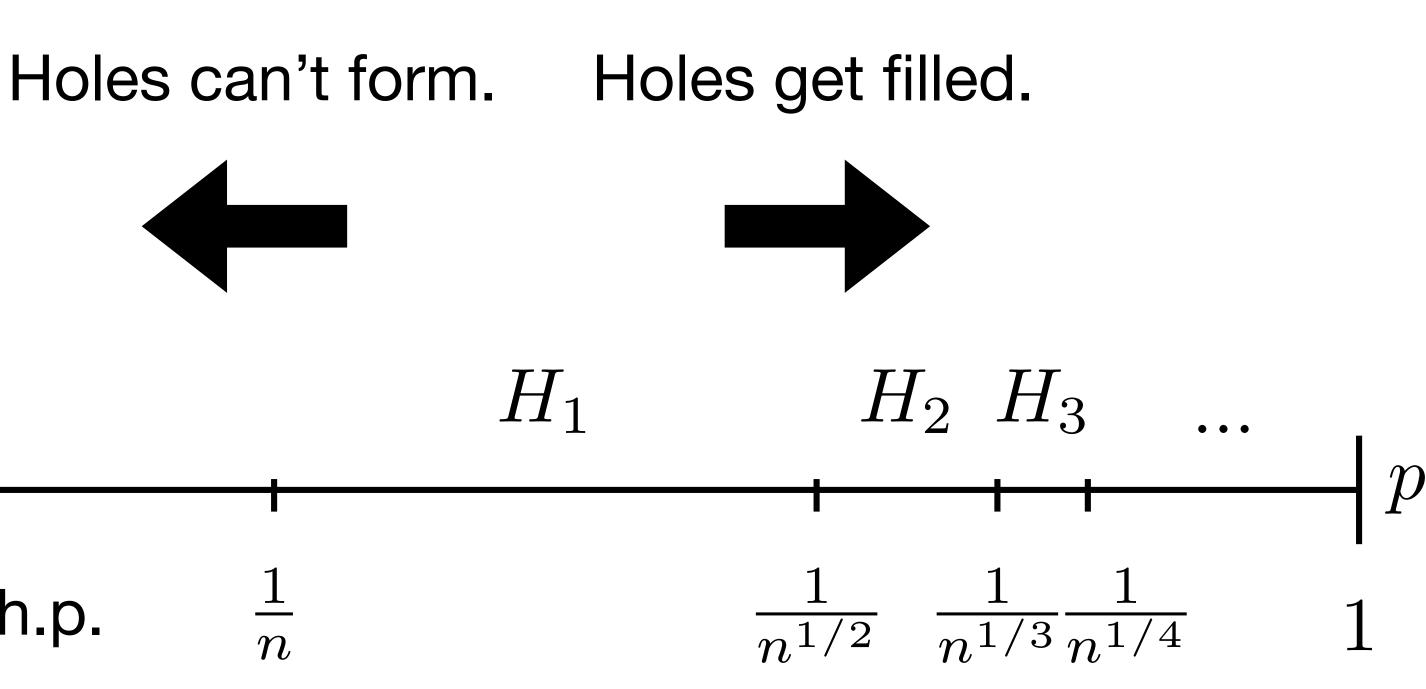


all log terms and constants forgone

Phase Transition [Kahle 2009, 2014]

 H_0

many components w.h.p.

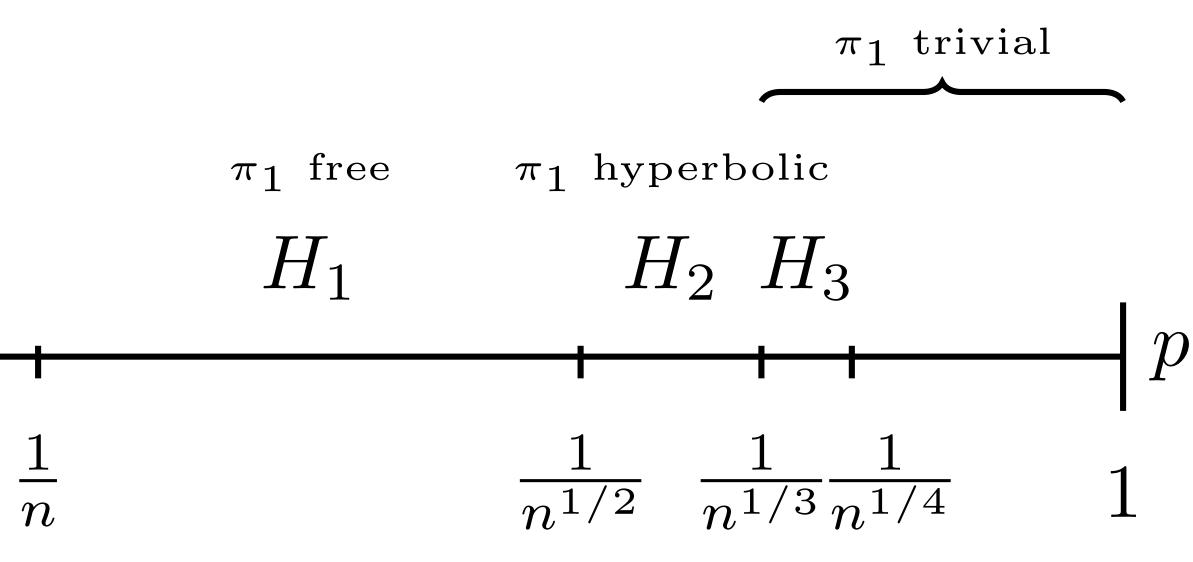


all log terms and constants forgone

Fundamental Group [Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

H_0

0 many components w.h.p.



all log terms and constants forgone

Geometric Complexes

image credit: Penrose

Expected Betti numbers at dimension k

• Let $\omega = nr^D$, where D is the ambient dimension

Expected Betti numbers at dimension k [Kahle 2011]

• Let $\omega = nr^D$, where D is the ambient dimension

 $\left(\right)$

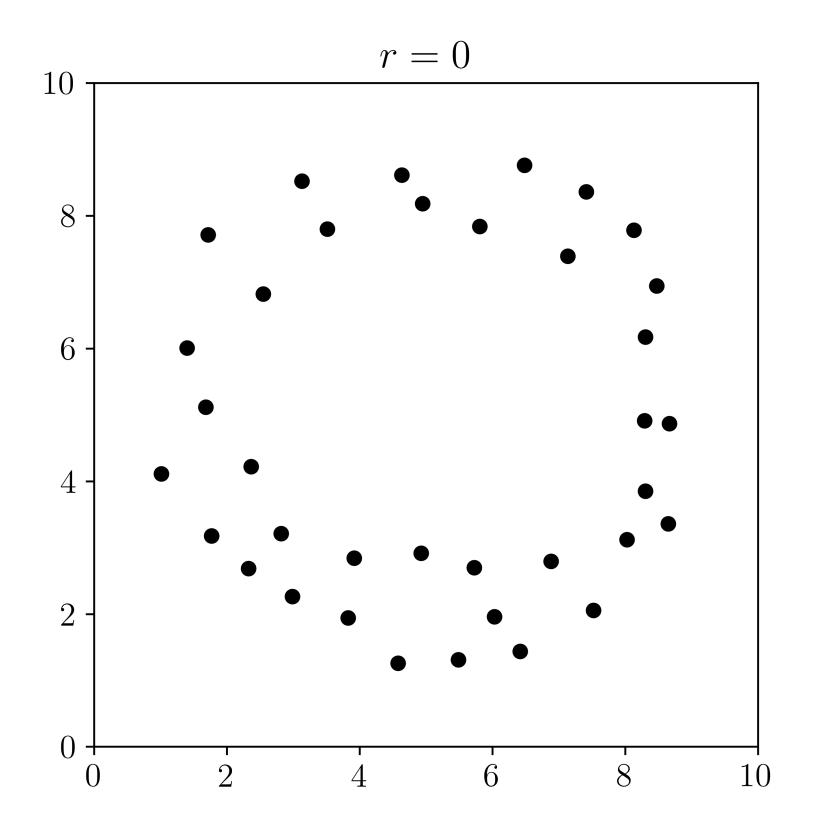
Rips: $\sim \omega^{k+1} n$ Cech: $\sim \omega^{2k+1} n$

 $O(\omega^k e^{-c\omega}n)$

under convexity assumption

 $n^{1/D}$ $\omega = 1$

Maximally Persistent Cycles



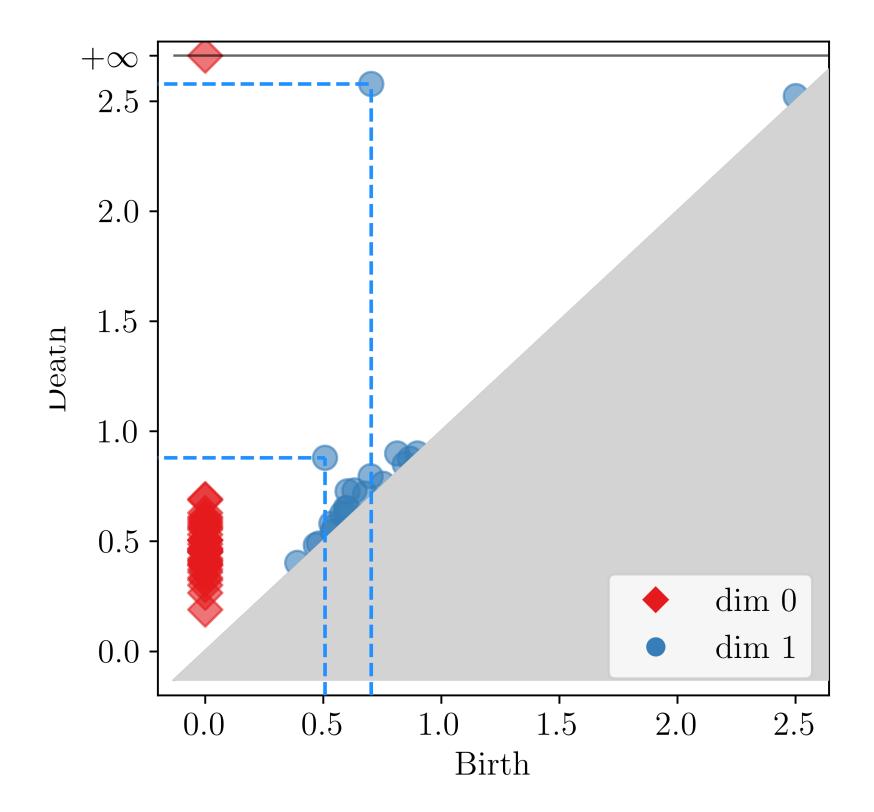


image credit: Andrey Yao

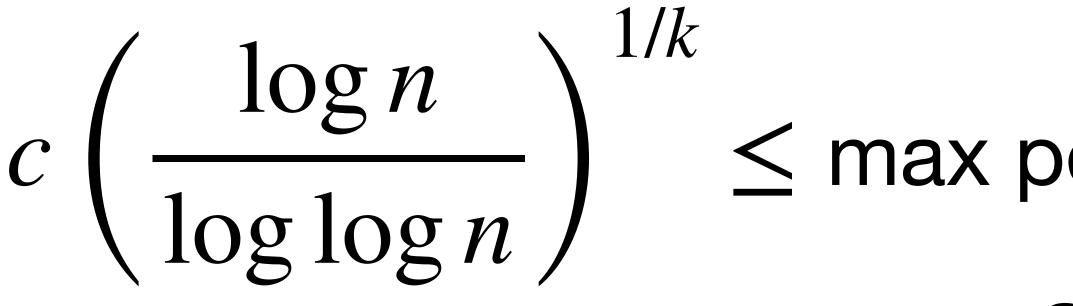
Maximally Persistent Cycles

n points in expectation

k-cycle

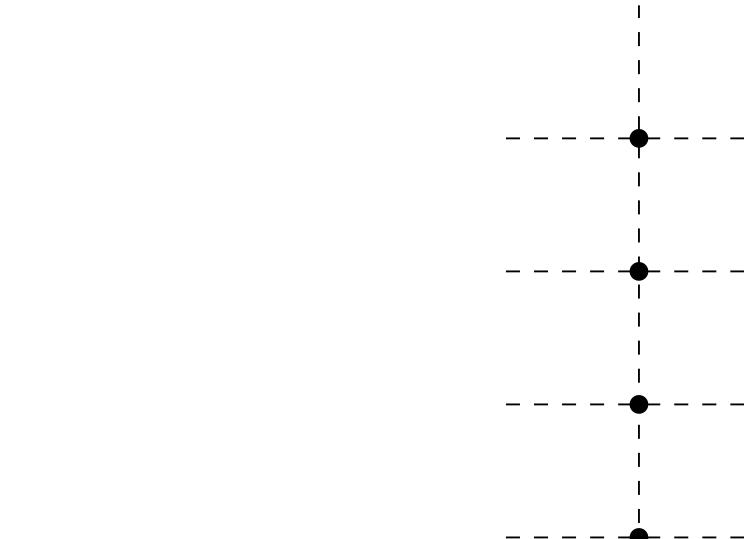
Maximally Persistent Cycles [Bobrowski-Kahle-Skraba 2017]

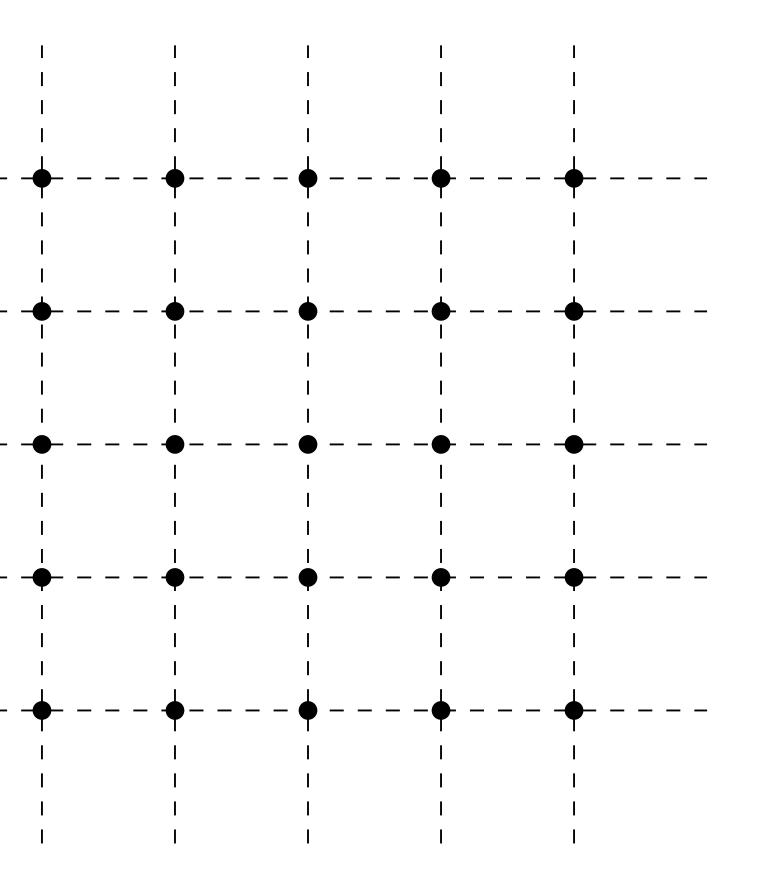
n points in expectation k-cycle



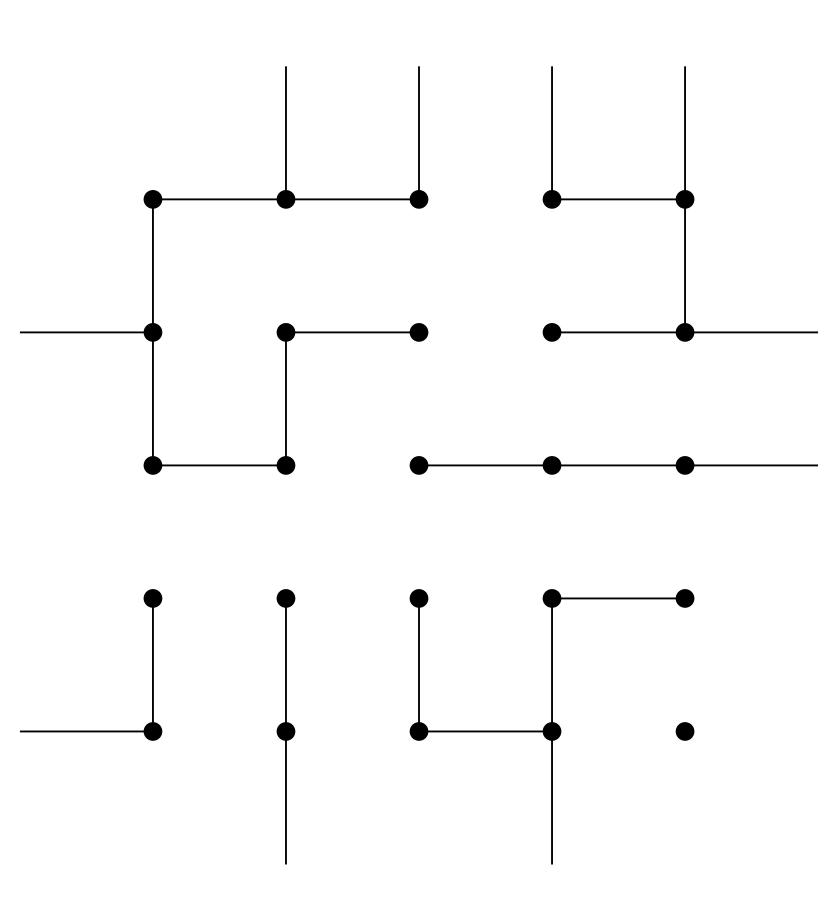
$c\left(\frac{\log n}{\log\log n}\right)^{1/k} \le \max \text{ persistence} \le C\left(\frac{\log n}{\log\log n}\right)^{1/k}$ a.a.s

Bernoulli Bond Percolation





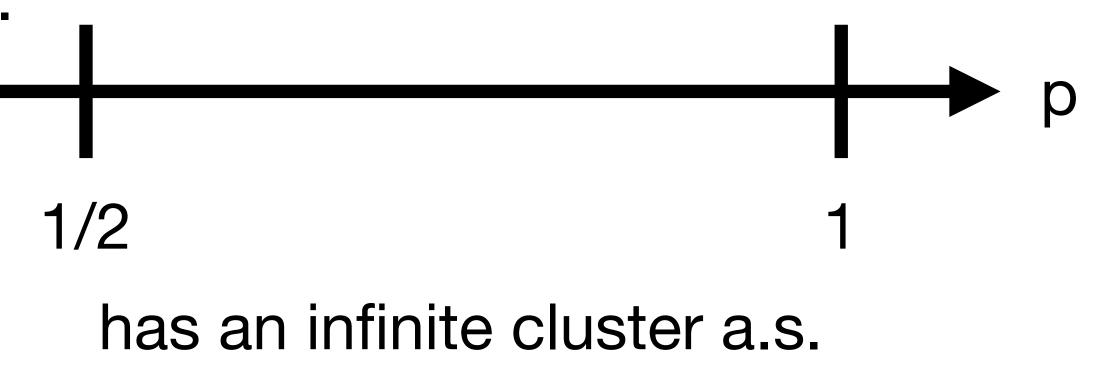
Bernoulli Bond Percolation



Phase Transition [Harris 1960, Kesten 1980]

0

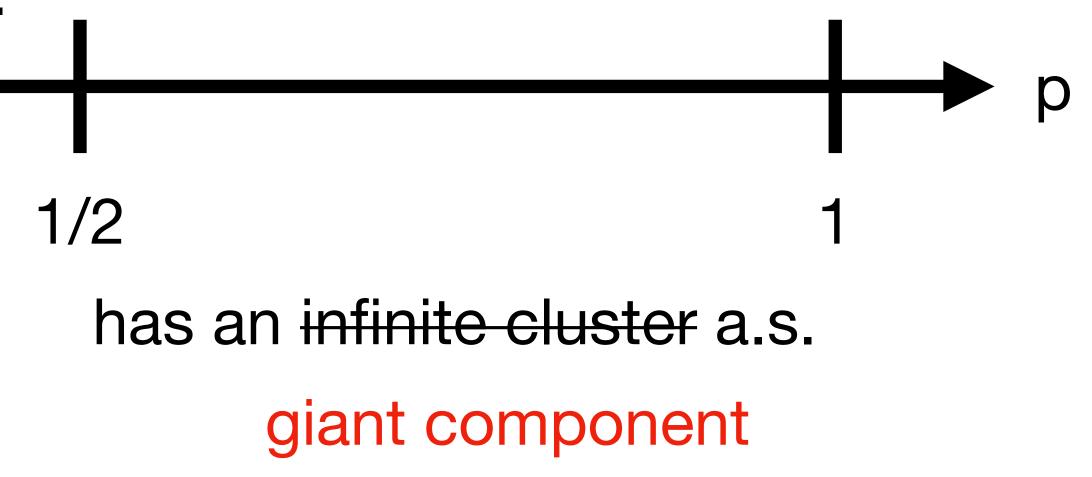
no infinite cluster a.s.

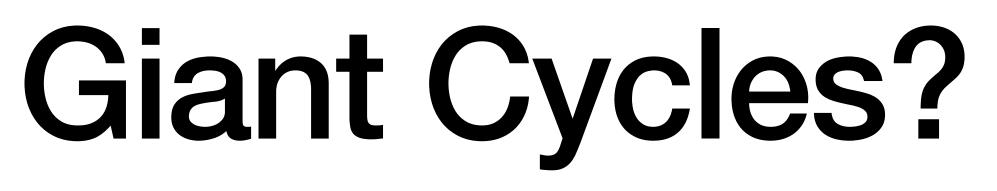


Phase Transition [Harris 1960, Kesten 1980]

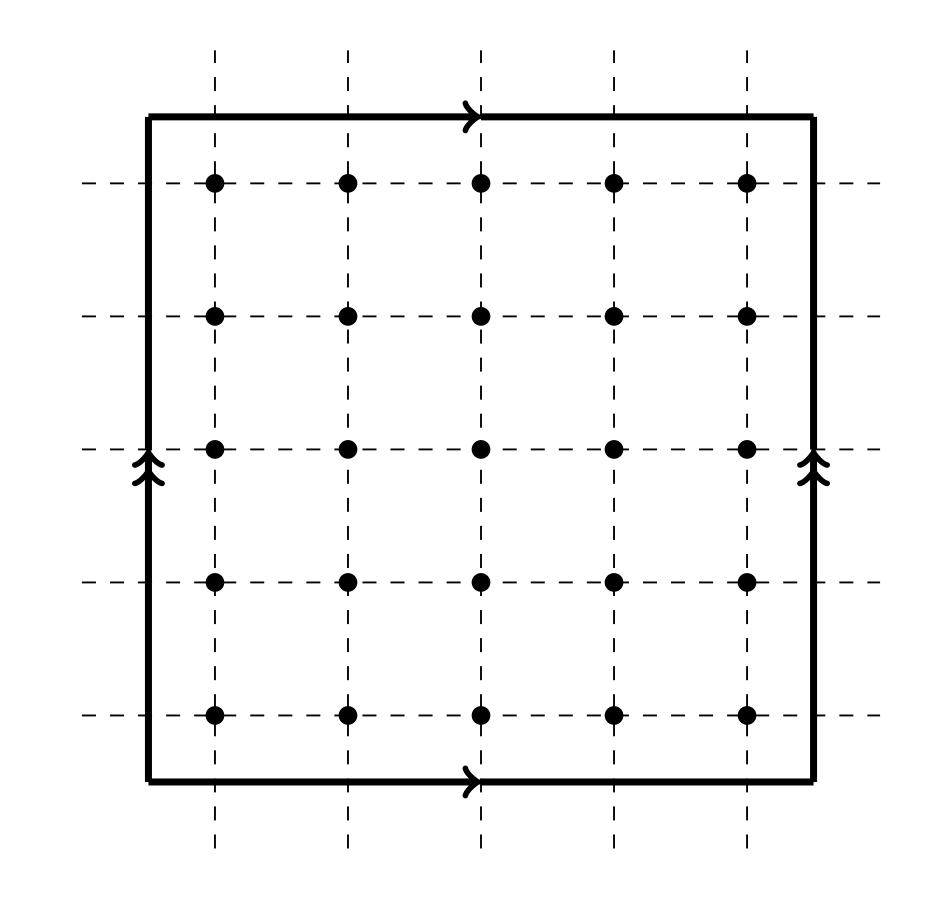
0

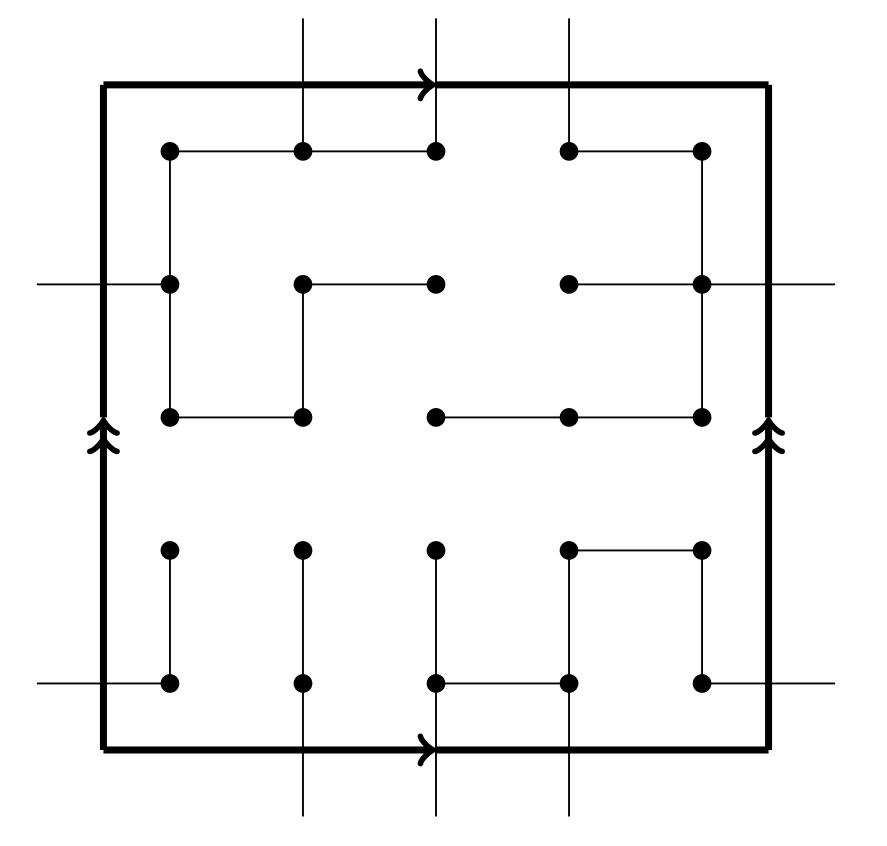
giant component no infinite cluster a.s.





Bernoulli Bond Percolation

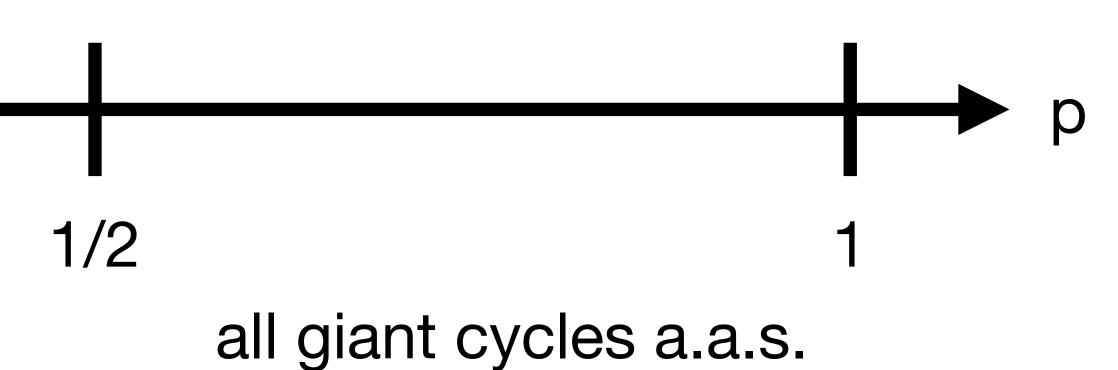




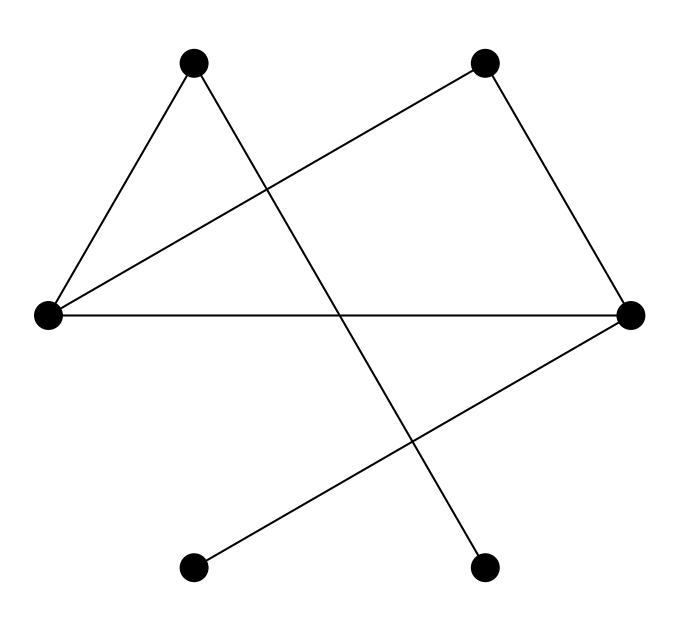
Phase Transition [Duncan-Kahle-Schweinhart, 2021]

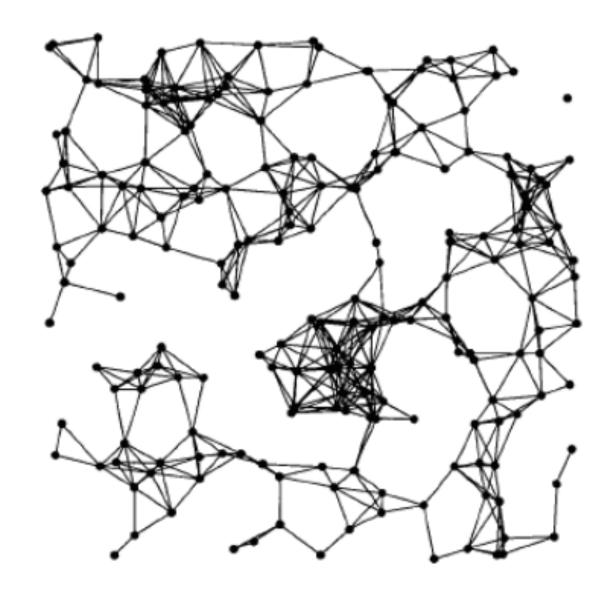
0

no giant cycle a.a.s.

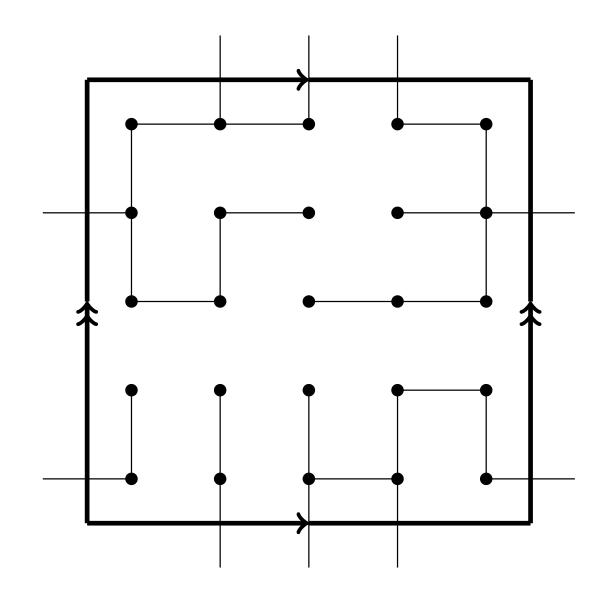


Tapas de Random Topology





Erdo-Renyi Complexes



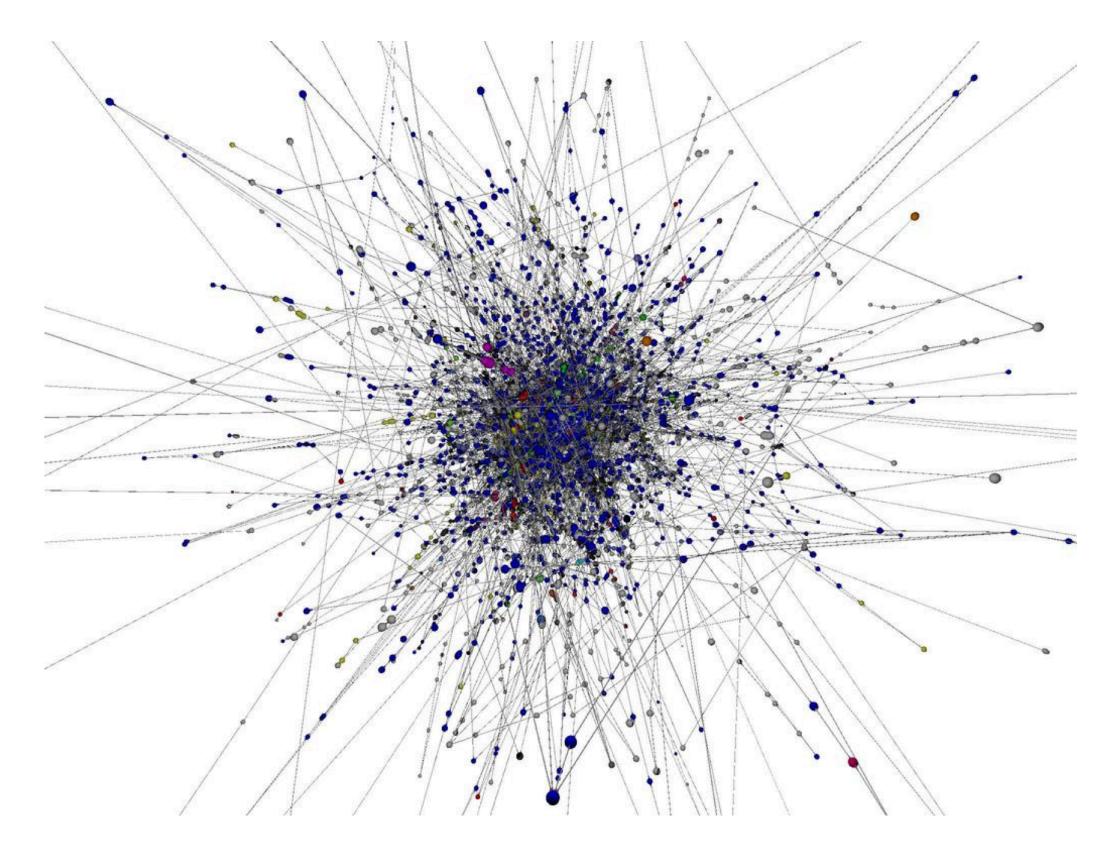
Geometric Complexes

Topological Percolation

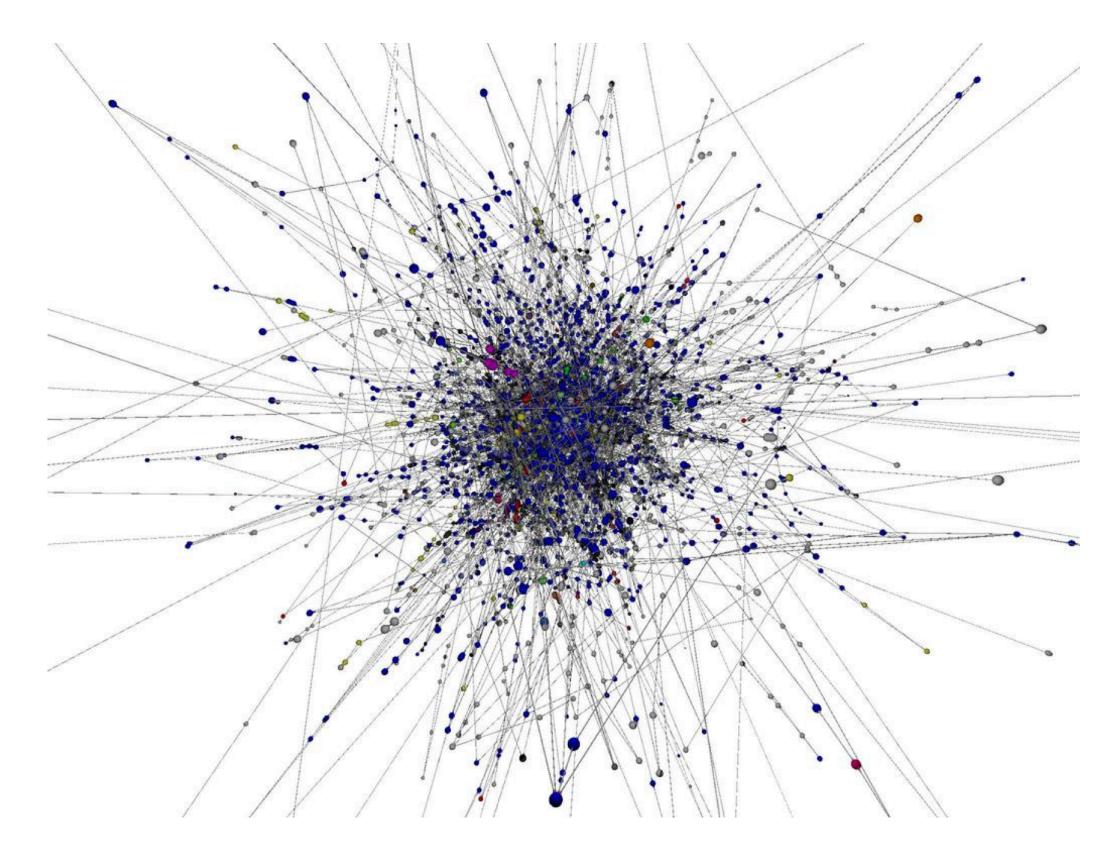
II. Preferential Attachment Beyond independence and homogeneity

Independent and identically distributed?

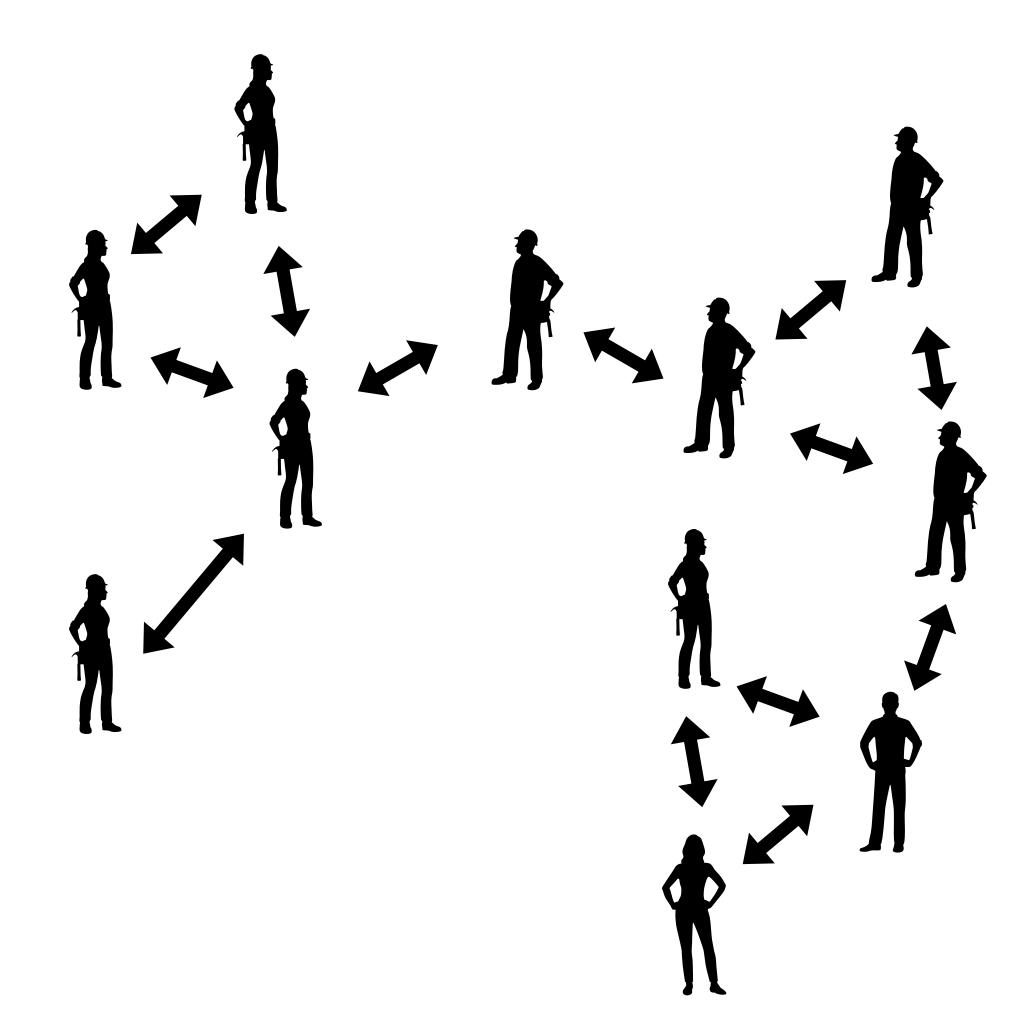
Independent and identically distributed?

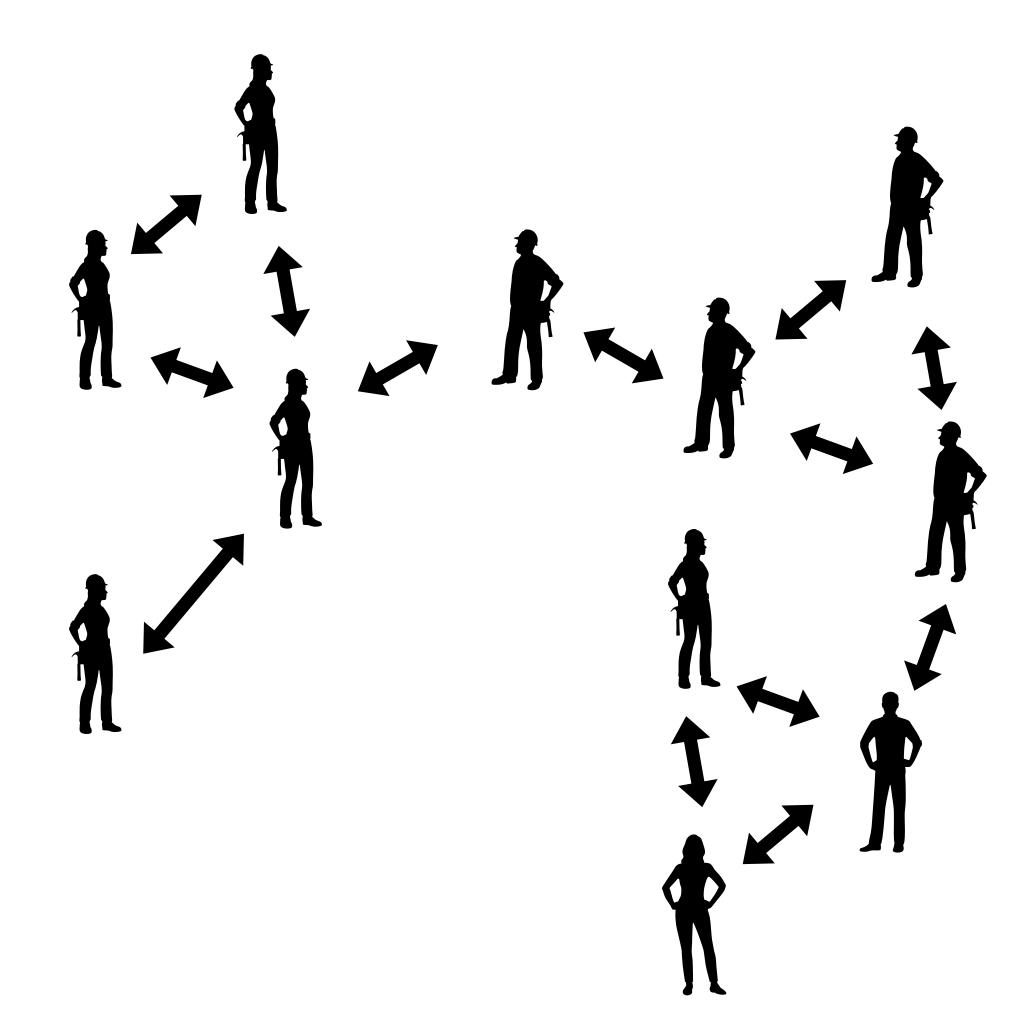


(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

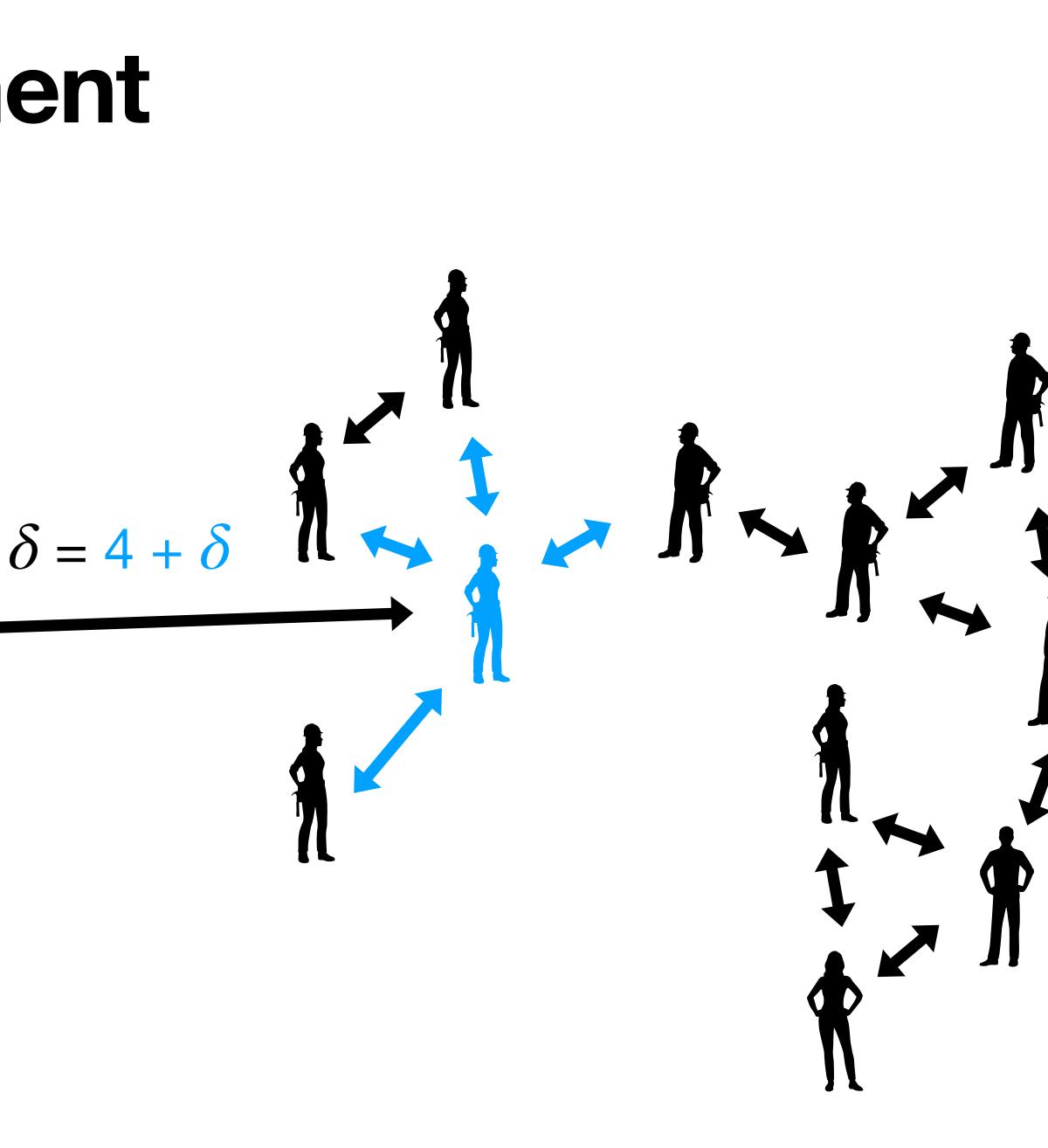


(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)



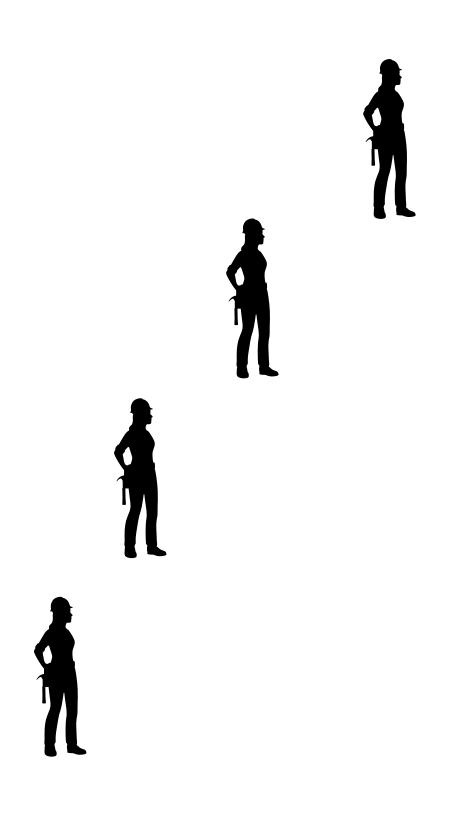


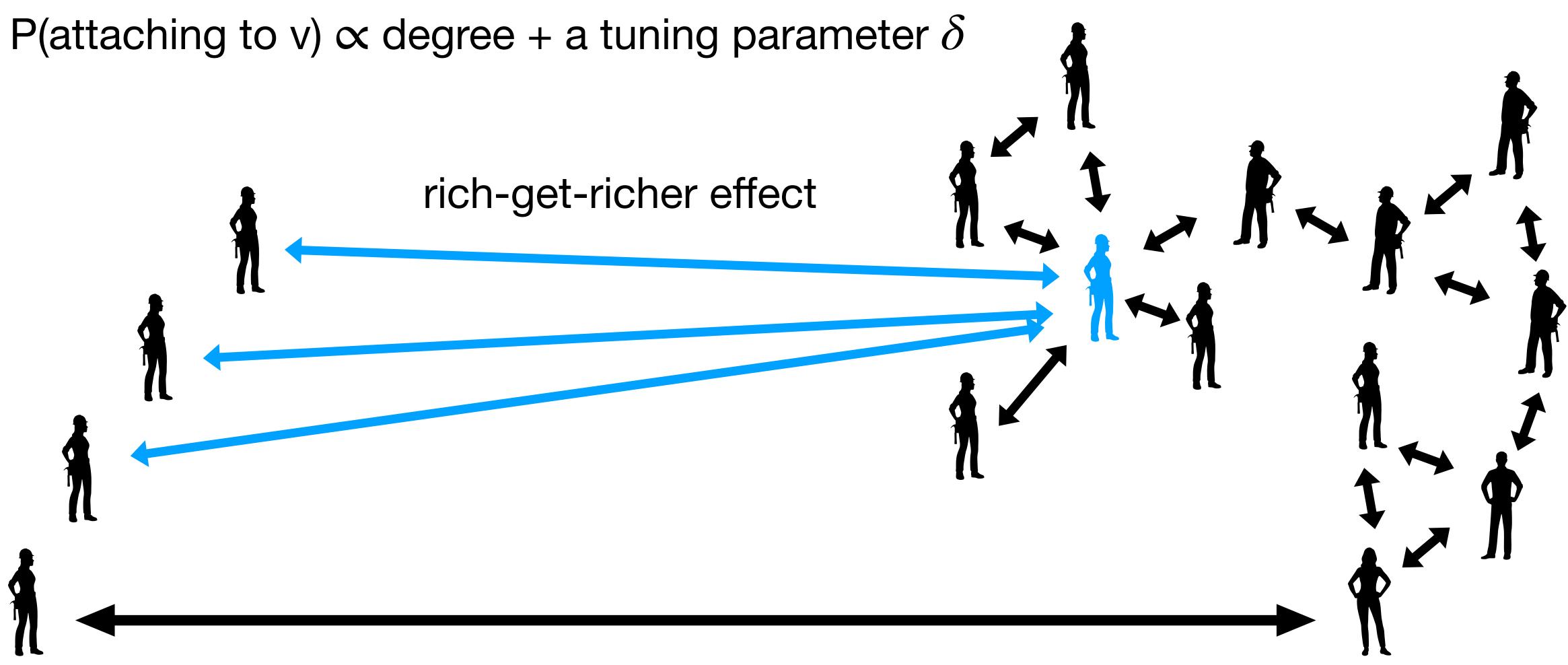
P(attaching to v) \propto degree + δ = 4 + δ



P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ



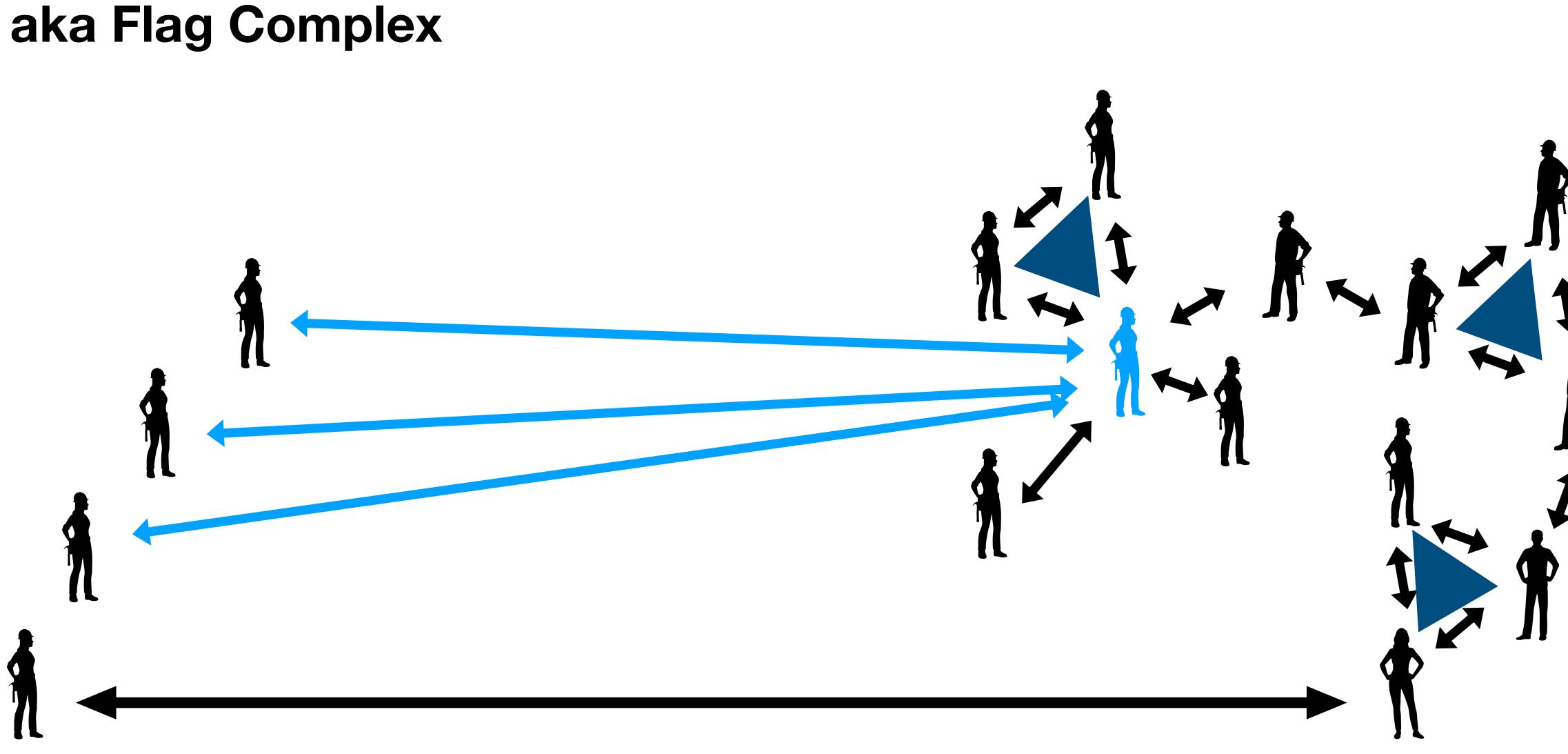


 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

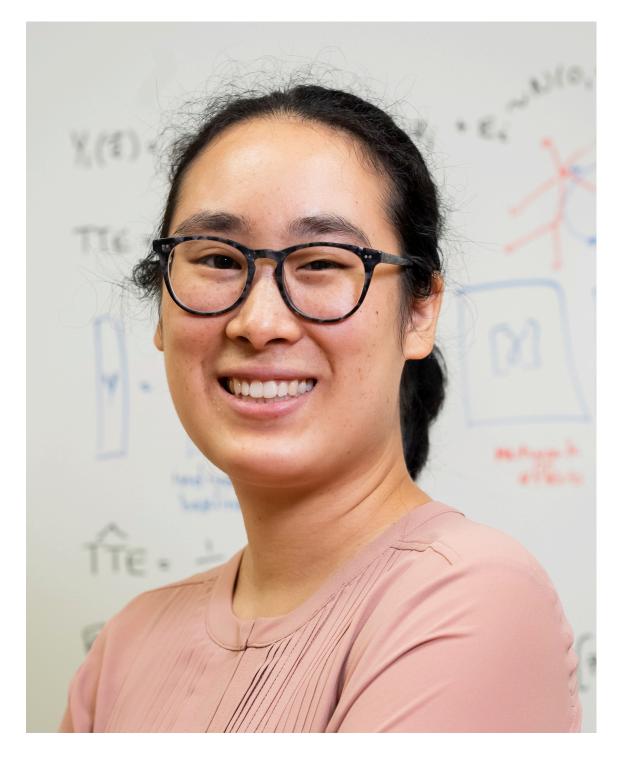
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex aka Flag Complex



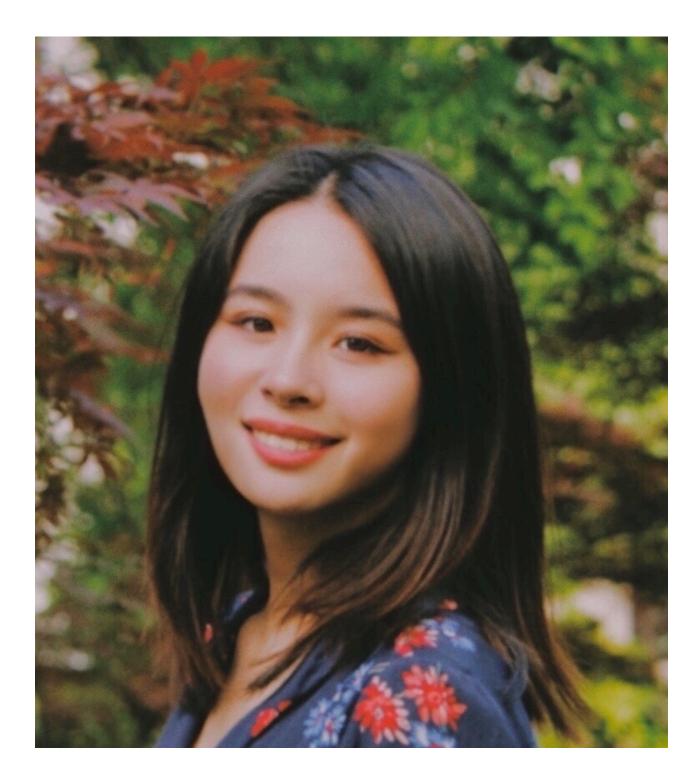
III Topology of Preferential Attachment

My Lovely Collaborators



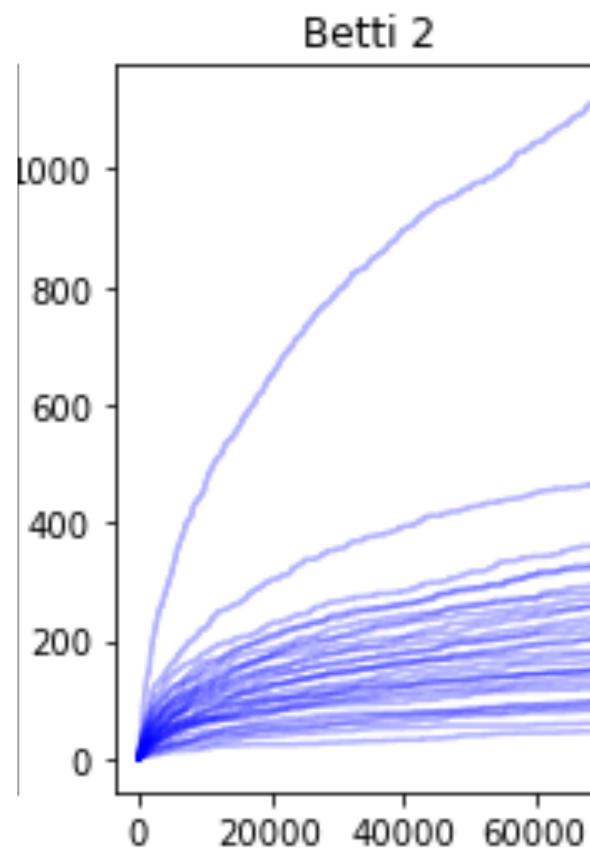
Christina Lee Yu

Gennady Samorodnitsky

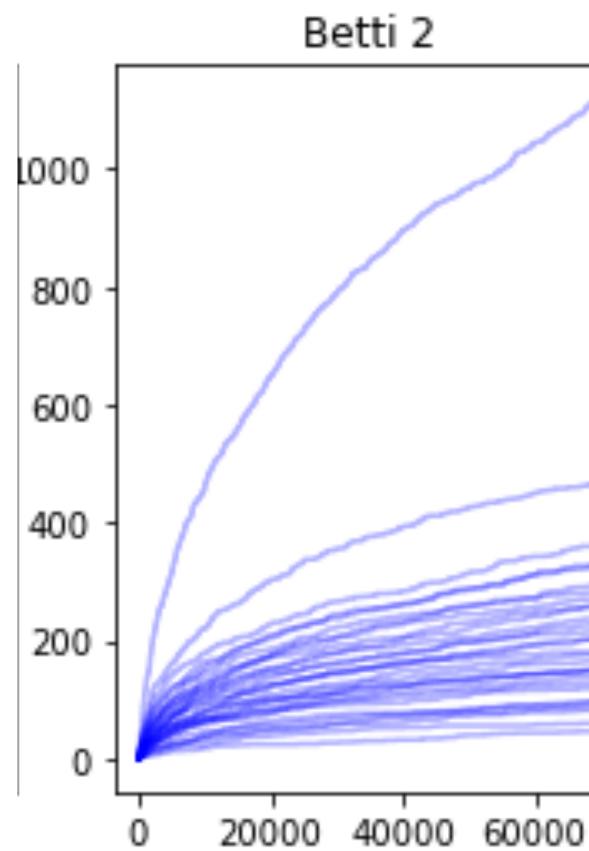


Rongyi He (Caroline)

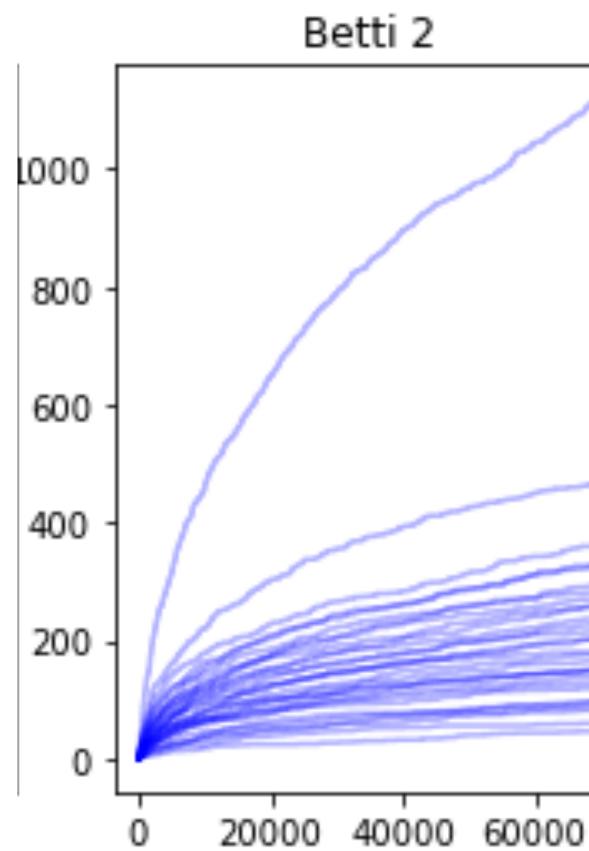
Expected Betti Number $E[\beta_q]$



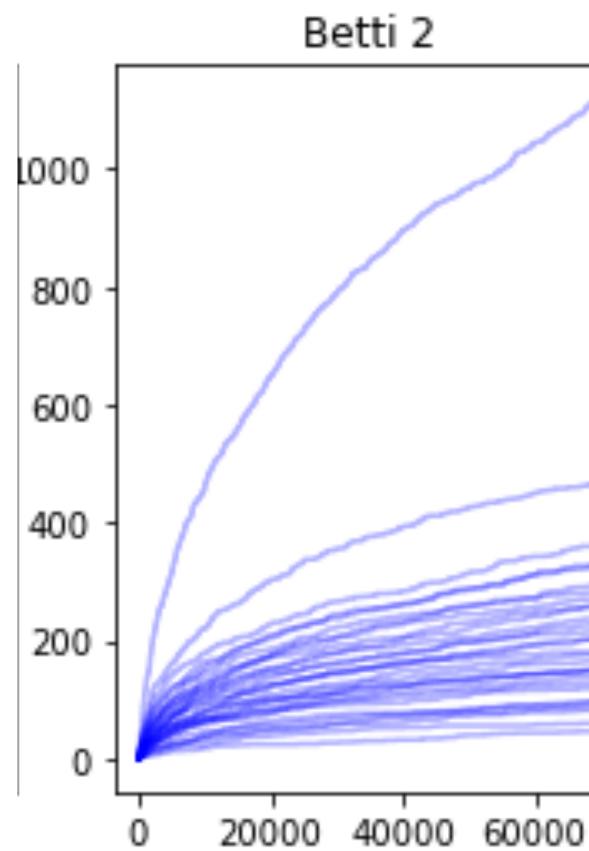
increasing trend



- increasing trend
- concave growth

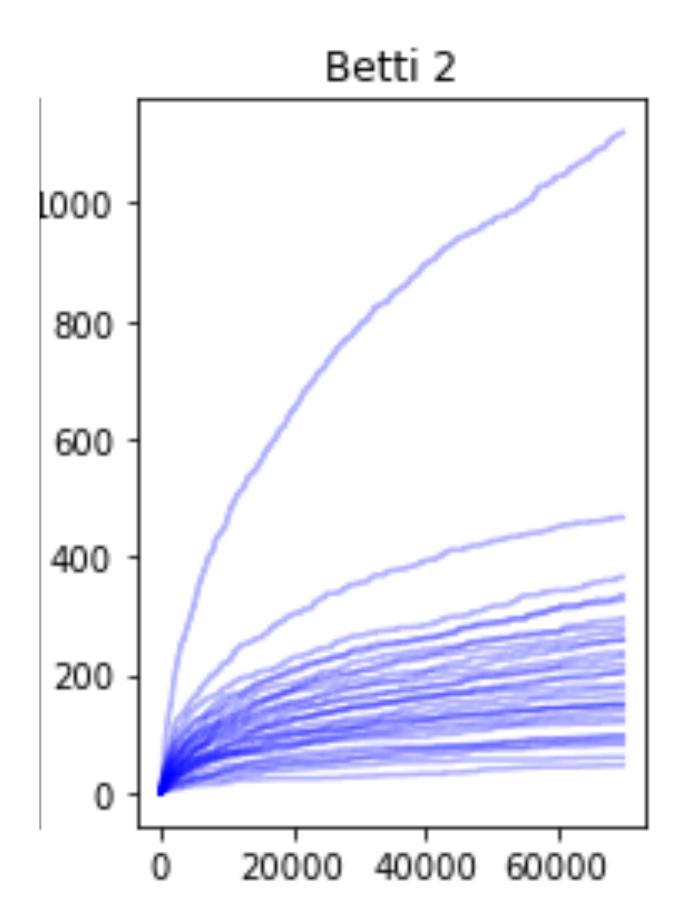


- increasing trend
- concave growth •
- outlier

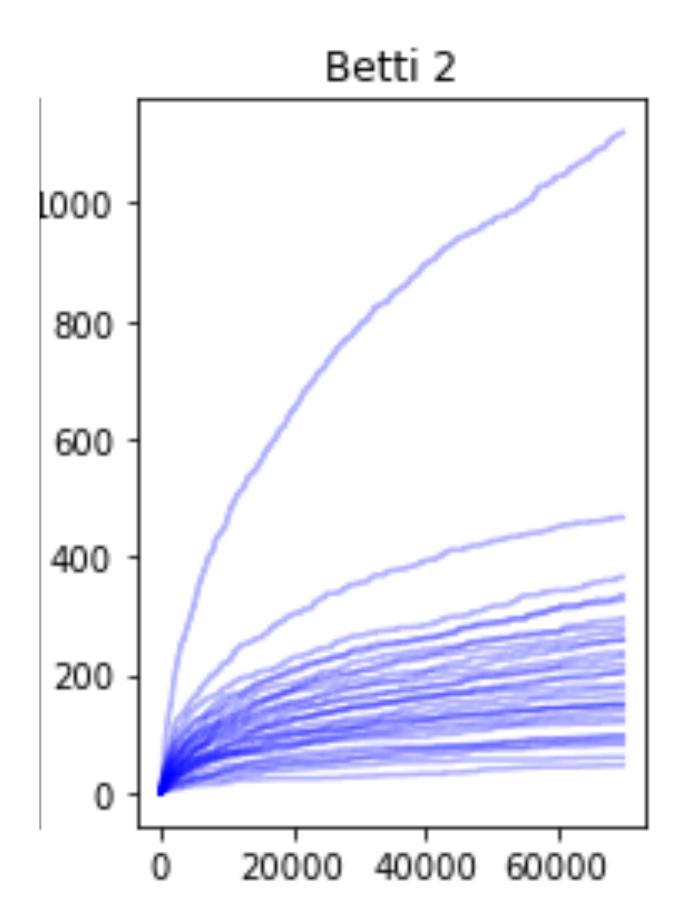


• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

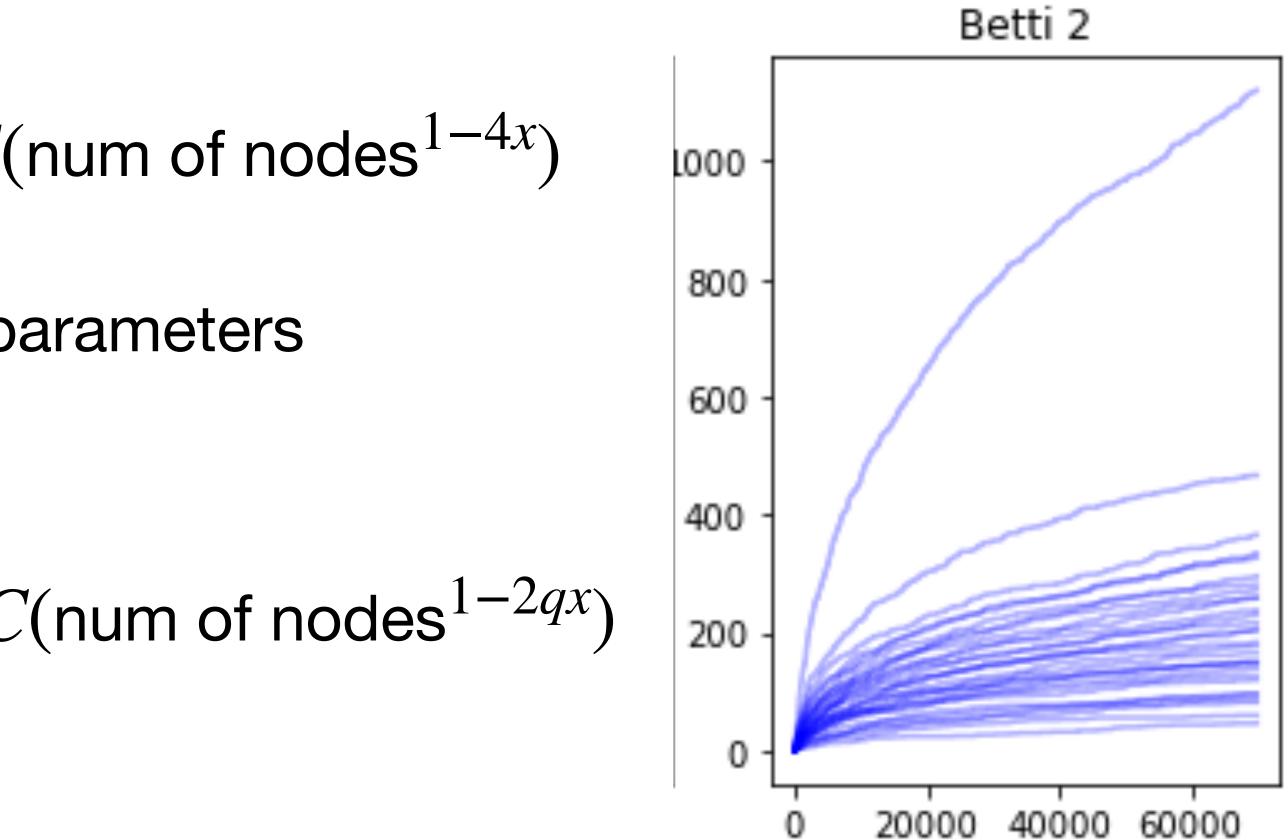
• $x \in (0, 1/2)$ depends on model parameters

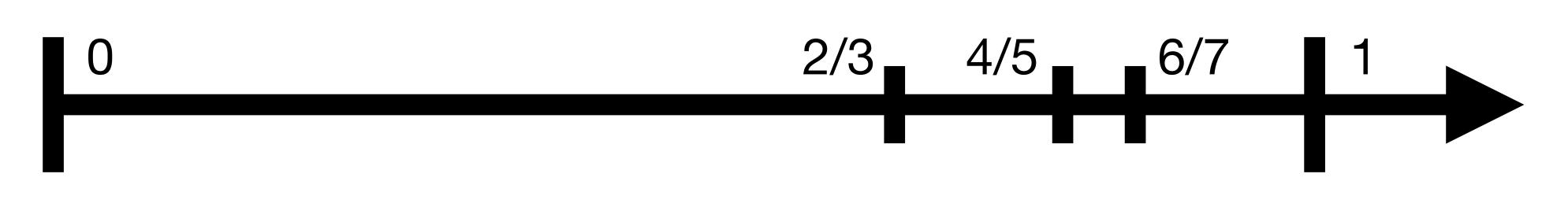


- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on model parameters
 - If 1 4x < 0, then $E[\beta_2] \le C$.



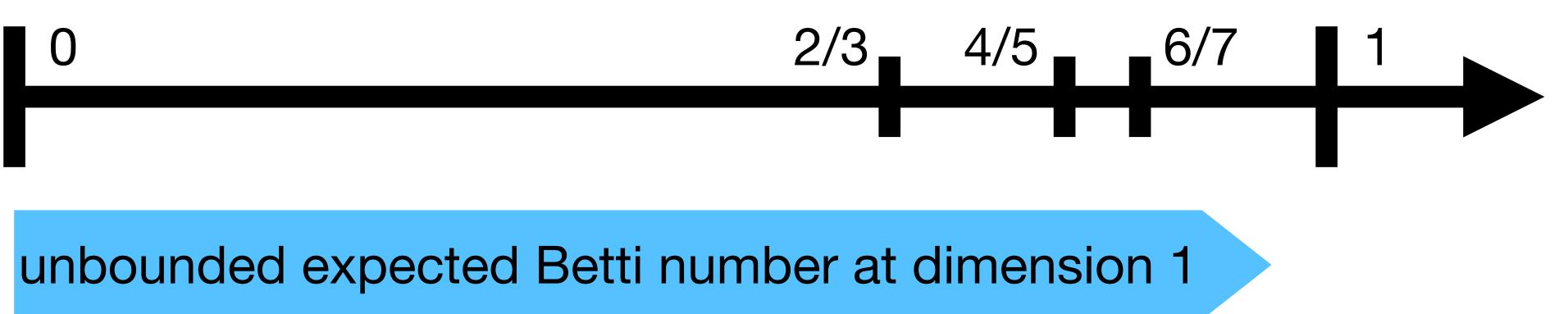
- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on model parameters
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for $q \ge 2$ if 1 - 2qx > 0





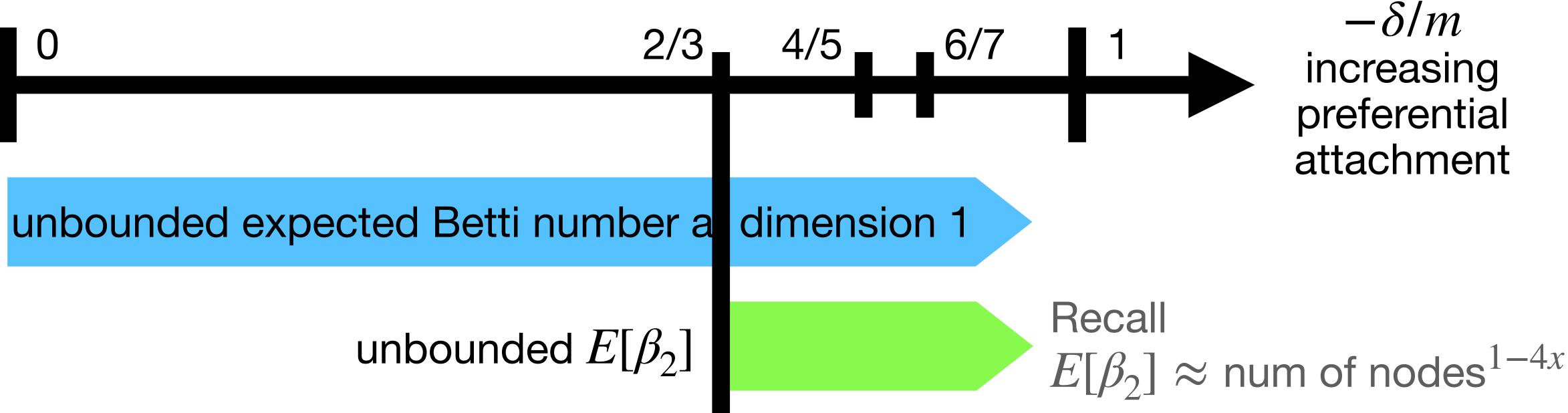
Recall P(attaching to v) \propto degree + δ m = number of edges per new node

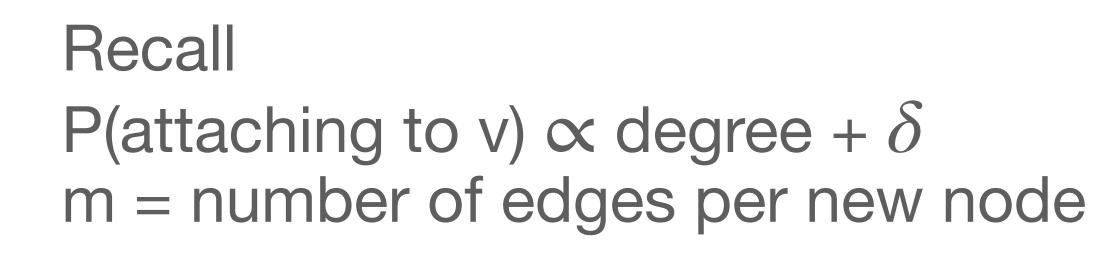
> $-\delta/m$ increasing preferential attachment

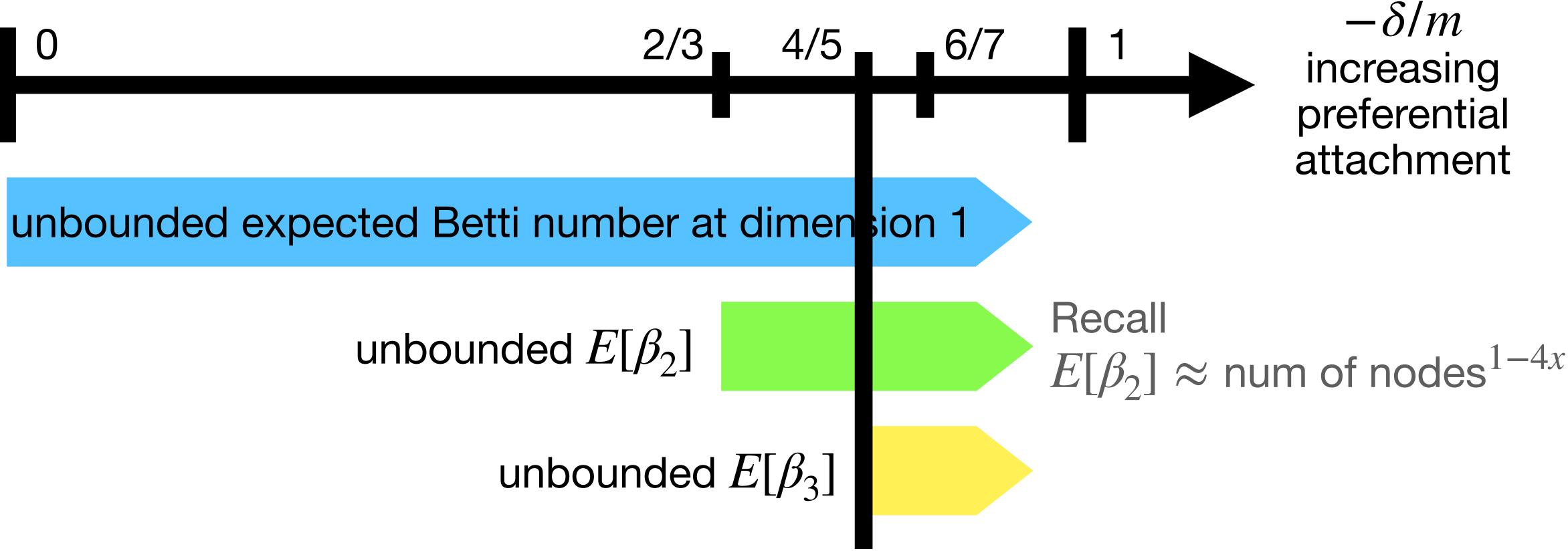


Recall P(attaching to v) \propto degree + δ m = number of edges per new node

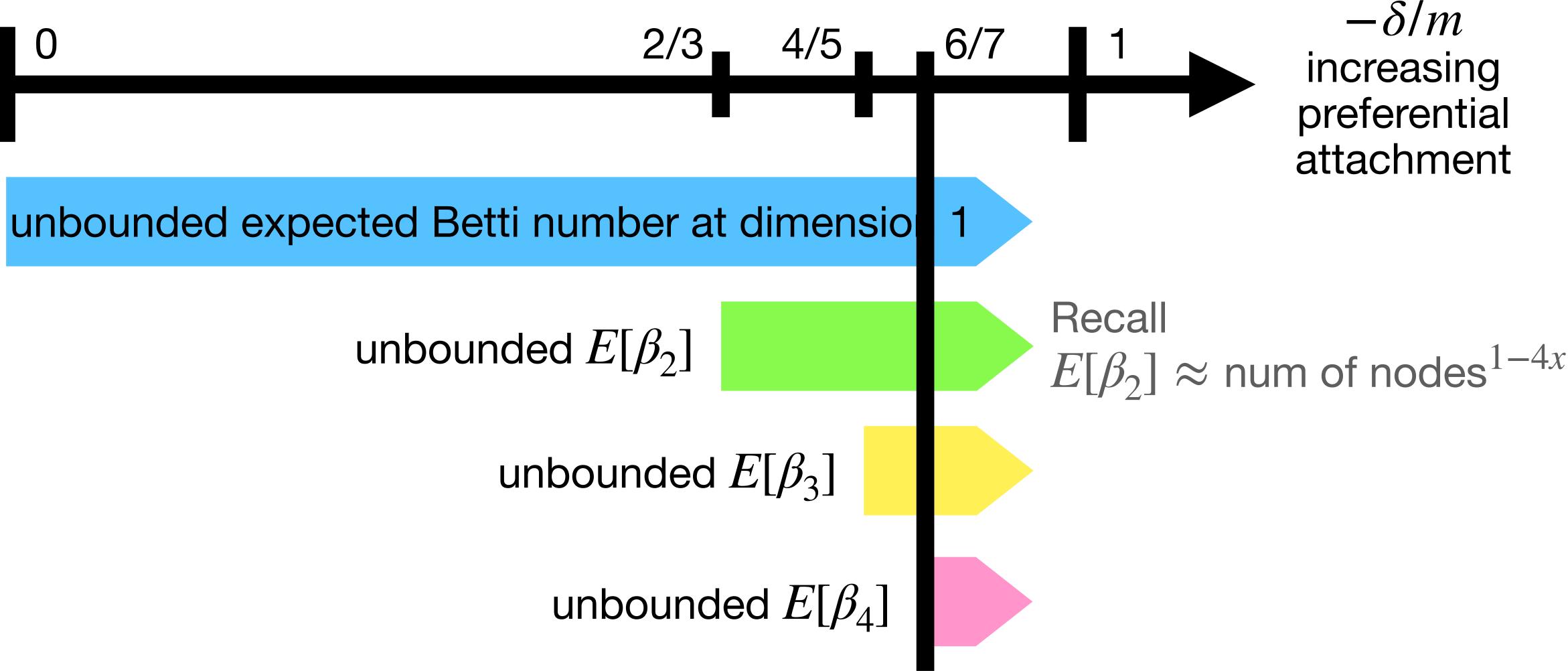
 $-\delta/m$



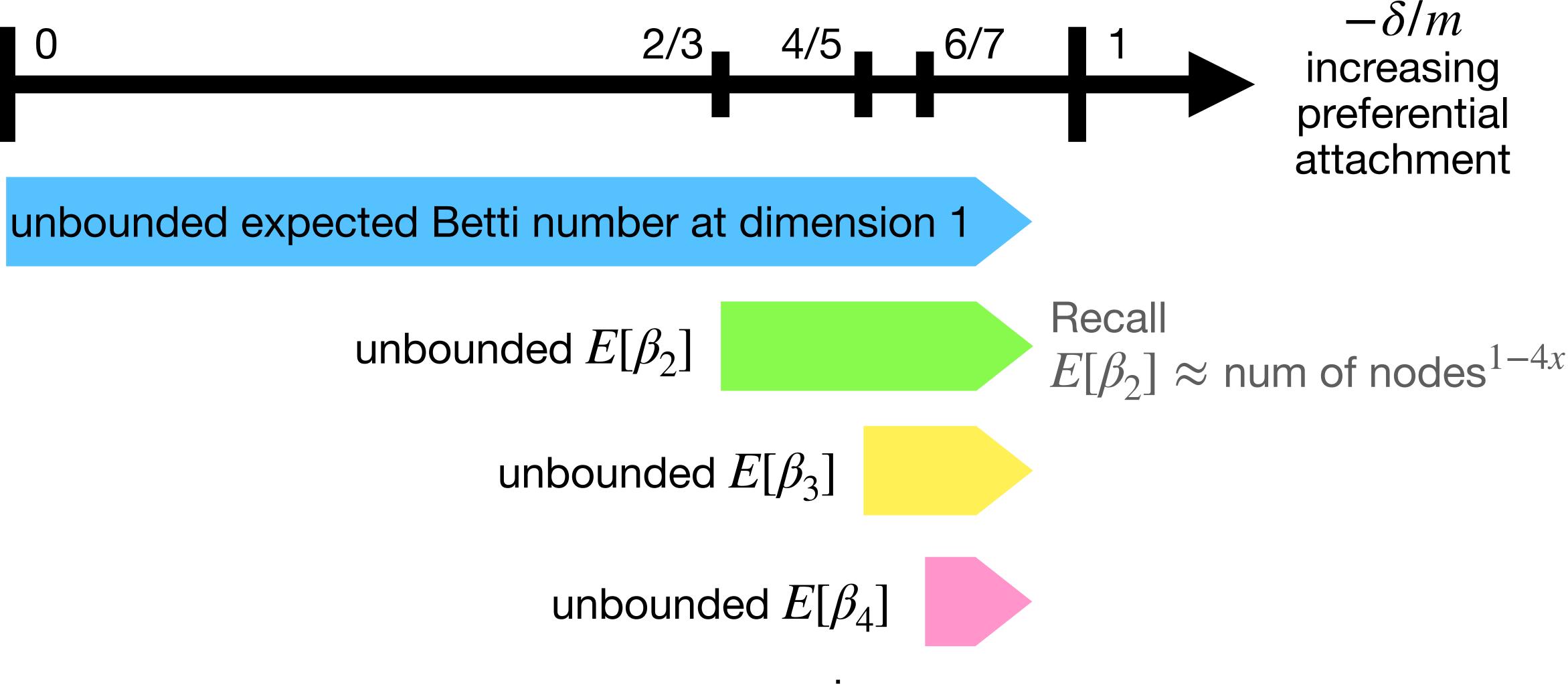


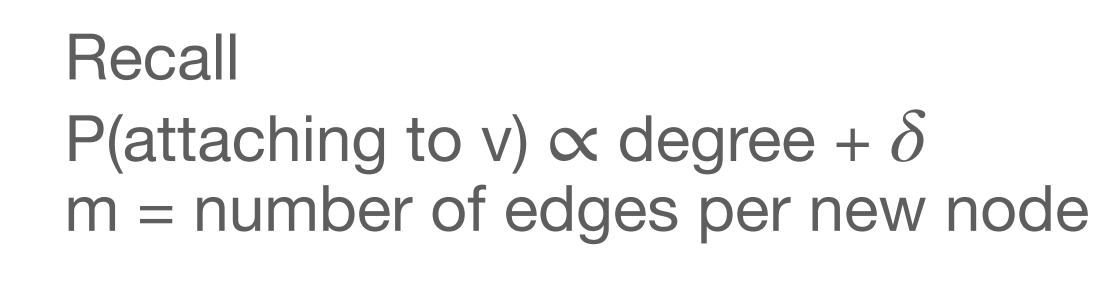


Recall P(attaching to v) \propto degree + δ m = number of edges per new node



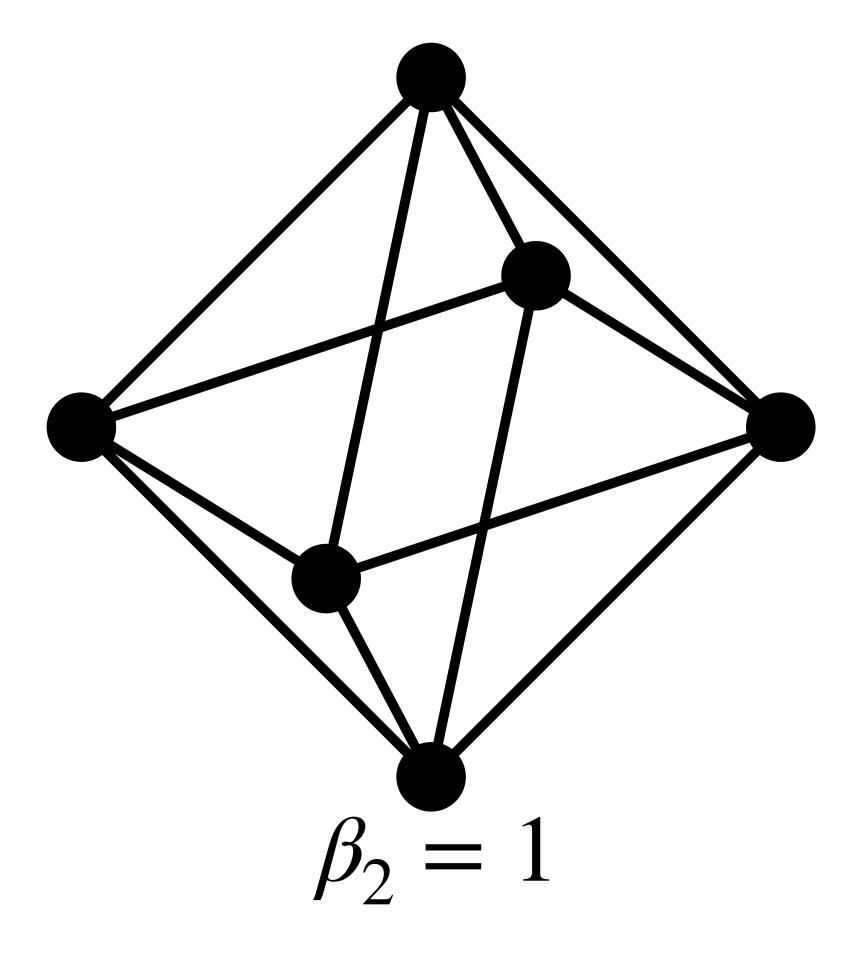
Recall P(attaching to v) \propto degree + δ m = number of edges per new node



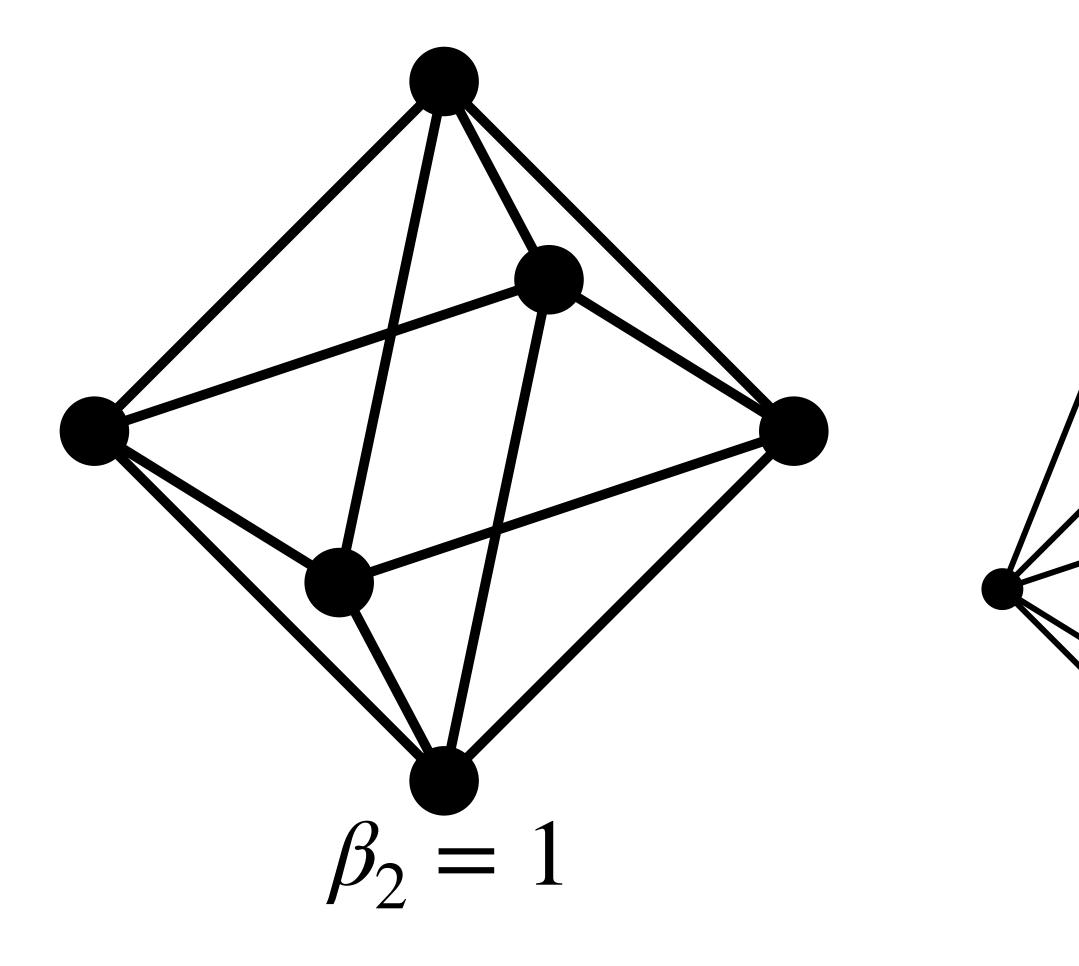


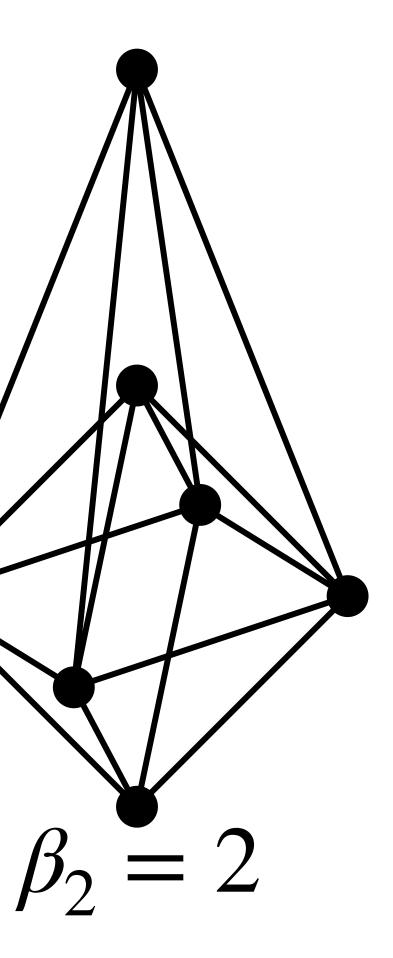
Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

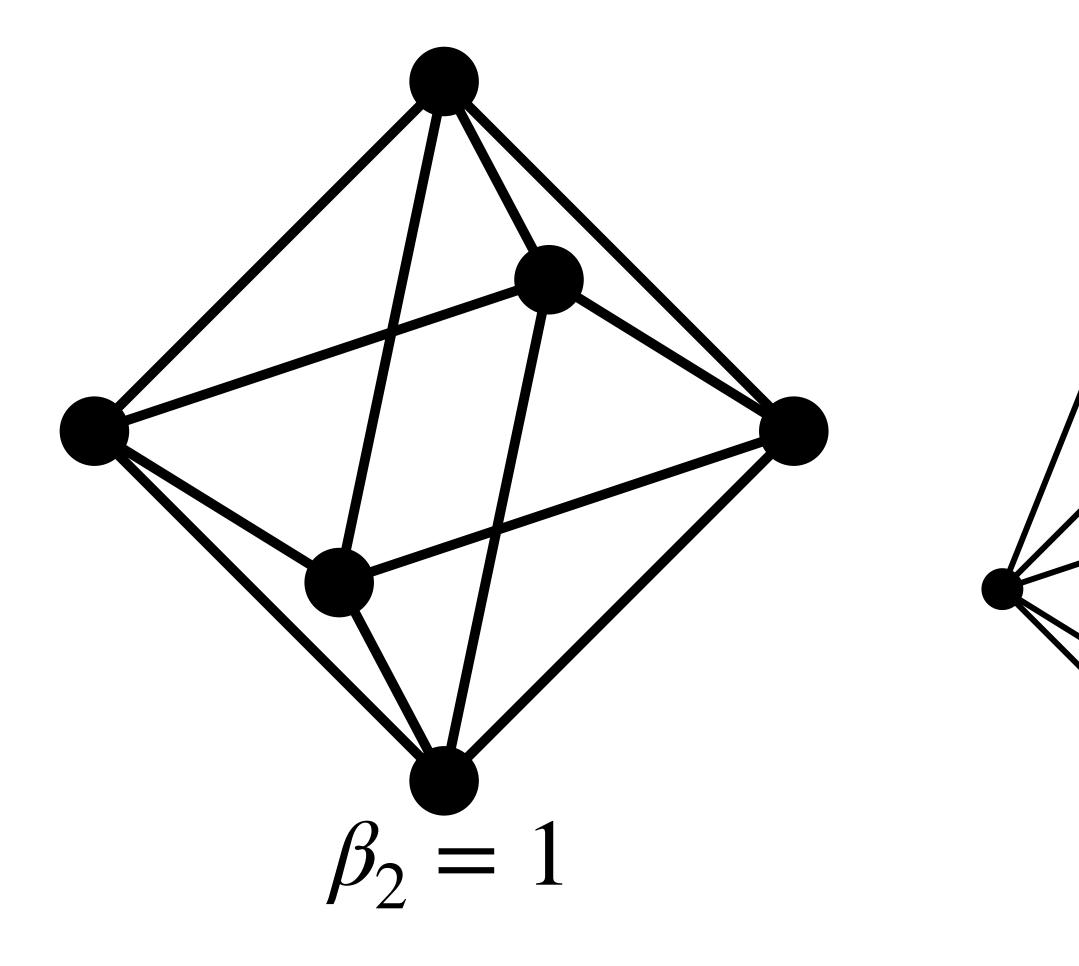


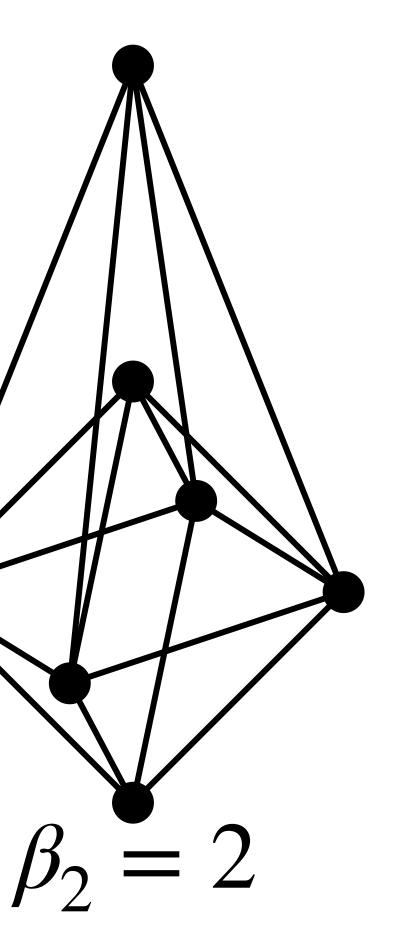
Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

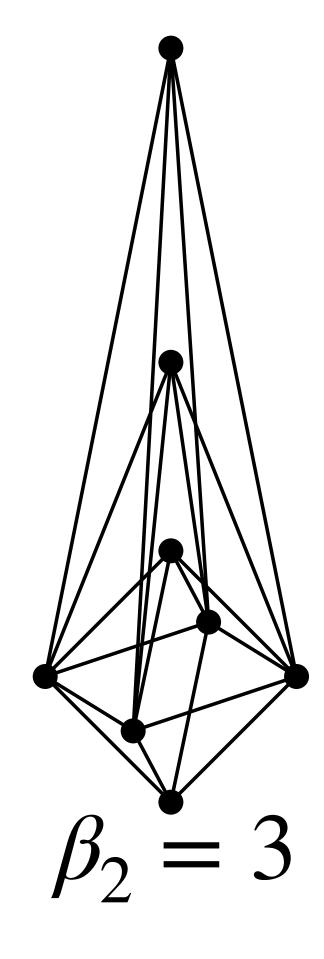




Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$







Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts •
- 2005] and [Kahle 2009]

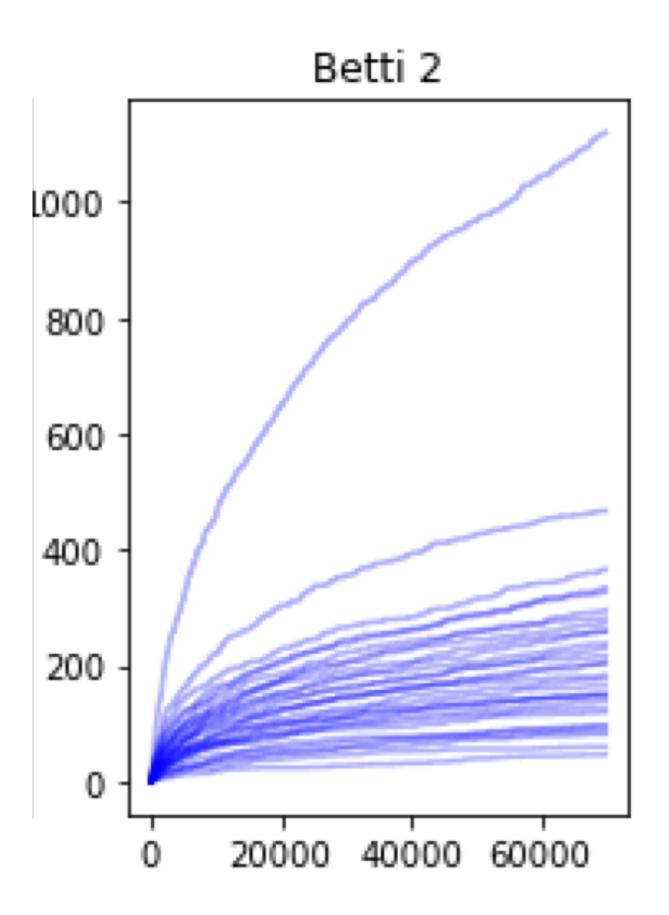
Identify the "square count" as the main term with minimal cycle results in [Gal

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

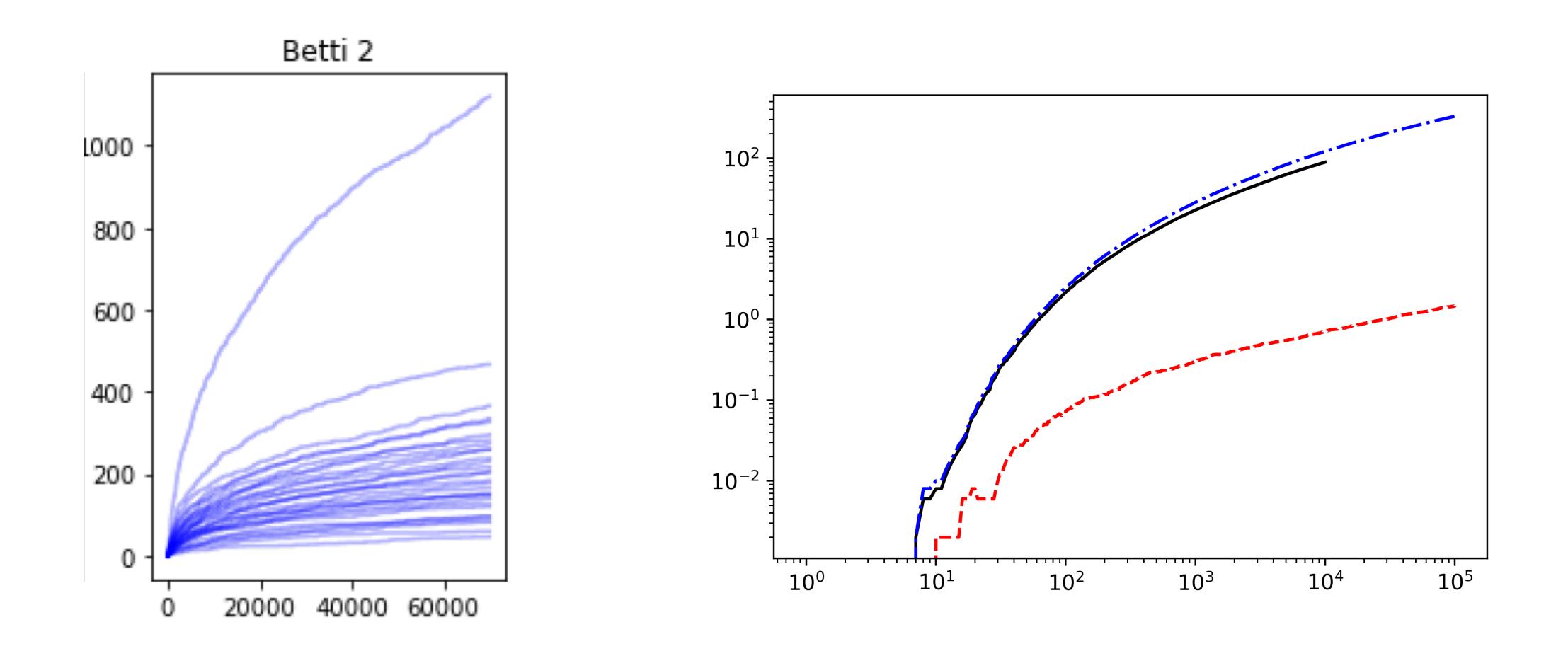
- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

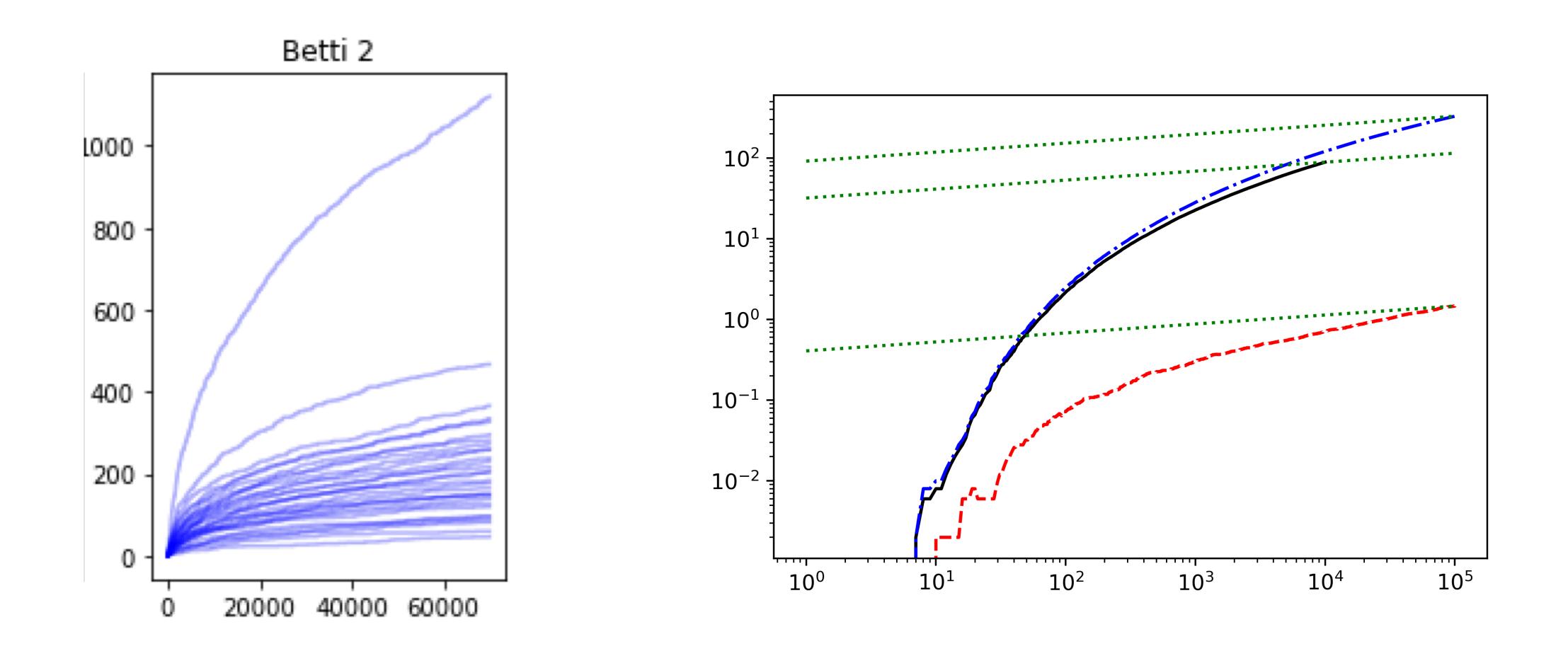
$E[\beta_2] \approx \text{num of nodes}^{1-4x}$



$E[\beta_2] \approx \text{num of nodes}^{1-4x}$



$E[\beta_2] \approx \text{num of nodes}^{1-4x}$



IV. What lies ahead

order of magnitude of expected Betti numbers

order of magnitude of expected Betti numbers

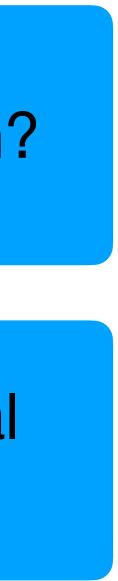
parameter estimation?

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?



parameter estimation?

order of magnitude of expected Betti numbers

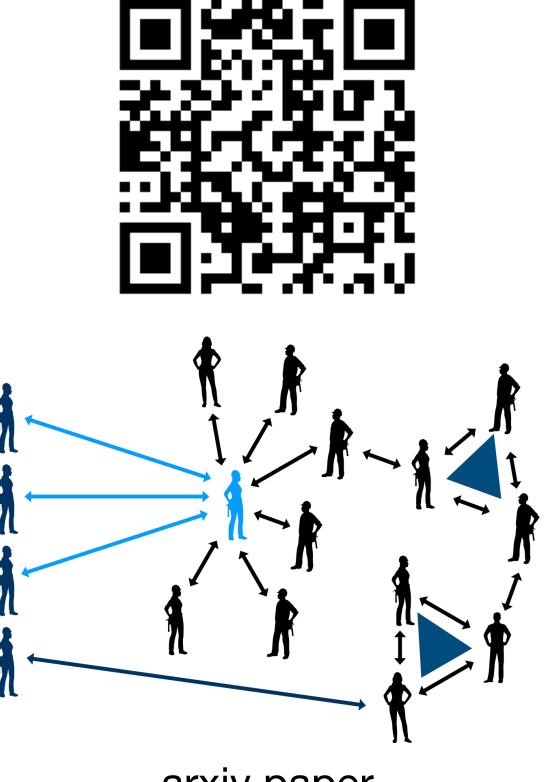
simplicial preferential attachment?

other non-homogeneous complexes?

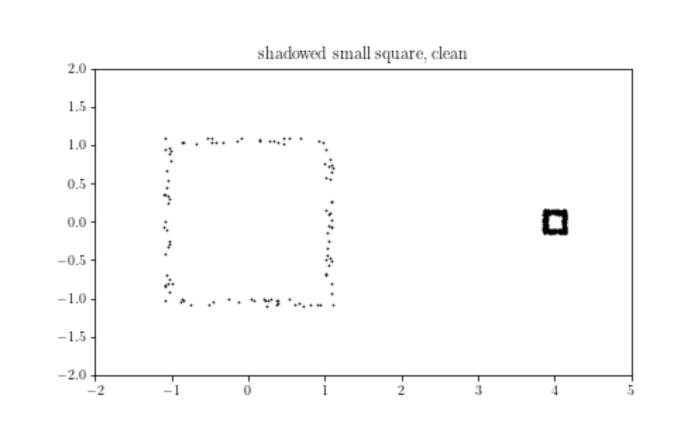
What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> **Cornell University**

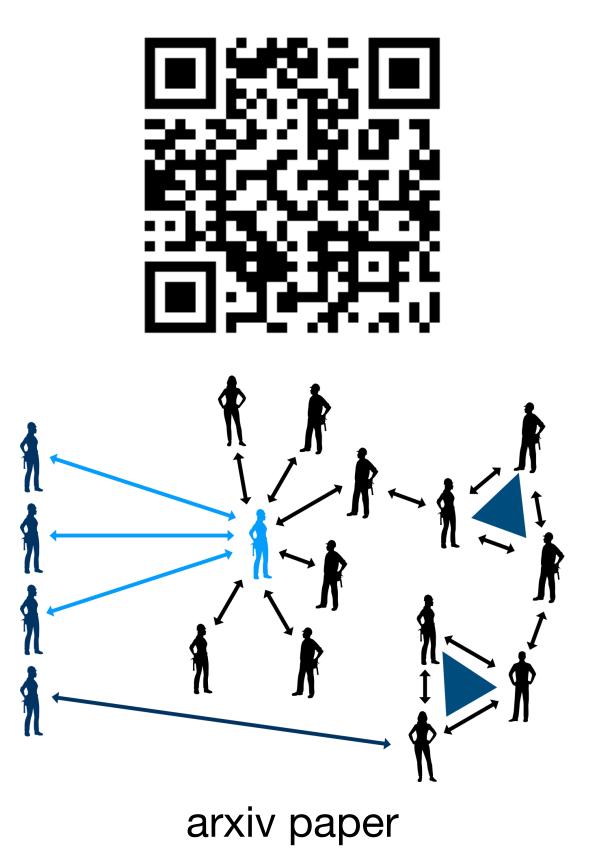


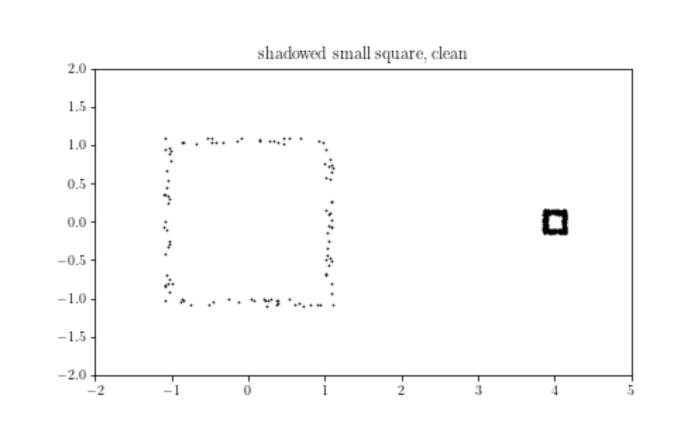
arxiv paper



my video about small holes

Gracias! Chunyin Siu <u>cs2323@cornell.edu</u> Cornell University





my video about small holes