The Topology of Preferential Attachment **Higher-Order Connectivity of Random Interactions**

Chunyin Siu Cornell University cs2323@cornell.edu

Probabilists

Statisticians

Network Scientists

Topologist

The Topology of Preferential Attachment **Higher-Order Connectivity of Random Interactions**

Chunyin Siu Cornell University cs2323@cornell.edu

So, preferential attachment...

Highly connected hubs

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

- Highly connected hubs
- Dense core of hubs?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

- Highly connected hubs
- Dense core of hubs?
- Beyond pairwise connections?

—> topological properties

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

preferential attachment

preferential attachment

topology

preferential attachment

topology

our result

I. Preferential Attachment

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

P(attaching to v) \propto degree + δ = 4 + δ

P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ

• Scale-freeness and Degree distribution [Barabasi and Albert 1999; Dorogovtsev, Mendes and Samukhin 2000; Krapivsky, Redner and Leyvraz 2000]

Fig 8.3 of R. Hofstad (2013). Random Graphs and Complex Networks. https://doi.org/10.1017/9781316779422

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node $-\delta/m$ 0 1 increasing preferential attachment

Phase transition

The limiting degree distribution has ...

finite variance

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$ increasing preferential attachment

infinite variance

Stegehuis 2019]

Fig 2 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013, Garavaglia and

• Subgraph Counts [Garavaglia and Stegehuis 2019]

Fig 3 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

degree distribution

triangle counts

subgraph counts

What should we count? And how?

backtracking?

- backtracking?
- concatenating with loops?

II. Into Topology **Counting everything in every dimension all at once**

Betti numbers count repeated connections "in all dimensions".

Betti numbers count repeated connections "in all dimensions".

"correct" way to count things
Betti numbers count repeated connections "in all dimensions".

"correct" way to count things

homological algebra

Betti numbers count repeated connections "in all dimensions".

"correct" way to count things

homological algebra

hard to write down

hard to do

Betti numbers β_k

- Repeated connections?
- Holes?

Betti numbers β_k Count of Holes

$$\beta_1 = 1 : 1$$
 loop

 $\beta_1 = 0$: 0 loop $\beta_2 = 1$: 1 cavity

Betti numbers Count of Repeated Connections

1 alternative path

0 loop 1 cavity

Betti numbers Count of (Independent) Repeated Connections

1 alternative path

0 loop 1 cavity

Betti numbers Count of (Independent) Repeated Connections

1 alternative path

0 alternative path (slide through upper hemisphere) 1 cavity

Betti numbers Count of (Independent) Repeated Connections

1 alternative path

0 alternative path (slide through upper hemisphere) 1 alternative way to slide a path

Betti numbers count

repeated connections "in all dimensions".

Interlude: Random Walk in the Literature What Random Topologists Already Know

Tapas of Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Phase Transition [Erdos-Renyi 1960]

many components w.h.p.

0

connected w.h.p.

all log terms and constants forgone

p

1

Erdos-Renyi Clique Complex

Betti Numbers

computation and plotting done by Zomorodian

Phase Transition [Erdos-Renyi 1960]

0 many components w.h.p.

connected w.h.p.

 $\frac{1}{n}$

n = number of nodes all log terms and constants forgone

1

Phase Transition [Kahle 2009, 2014]

H_0

0 many components w.h.p.

n = number of nodes all log terms and constants forgone

Phase Transition [Kahle 2009, 2014]

H_0

many components w.h.p. $\left(\right)$

Phase Transition [Kahle 2009, 2014]

 H_0

many components w.h.p.

- Rips
- Cech

- Rips (clique)
- Cech

- Rips (clique)
- Cech

Expected Betti numbers at dimension k [Kahle 2011]

Expected Betti numbers at dimension k [Kahle 2011]

• *n*, the number of points

Expected Betti numbers at dimension k [Kahle 2011]

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

Rips:
$$\sim \omega^{k+1}n$$

Cech: $\sim \omega^{2k+1}n$
sparse

 $O(\omega^k e^{-c\omega}n)$

under convexity assumption

 $\omega = 1$

dense

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

 $O(\omega^k e^{-c\omega}n)$

under convexity assumption

 $\omega = 1$

dense

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

$$E\beta_{k}(\text{Cech}) \to \infty$$

$$-\frac{1}{D}\left(1 - \frac{1}{k+2}\right) \text{ sparse } n^{-1/D}$$

• Cech: weak convergence in finite-dimensional sense

Cech: weak convergence in finite-dimensional sense

Cech: weak convergence in finite-dimensional sense

Cech: weak convergence in finite-dimensional sense

Gaussian process difference of two timechanged Brownian motions

Geometric Complexes

image credit: Penrose

Bernoulli Bond Percolation

Bernoulli Bond Percolation

Phase Transition [Harris 1960, Kesten 1980]

0

no infinite cluster a.s.

Phase Transition [Harris 1960, Kesten 1980]

0

giant component no infinite cluster a.s.

Bernoulli Bond Percolation

Phase Transition [Duncan-Kahle-Schweinhart, 2021]

0

no giant cycle a.a.s.

Tapas at Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Betti numbers count

repeated connections "in all dimensions".

Clique Complex aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

increasing trend

- increasing trend
- concave growth •

- increasing trend
- concave growth
- outlier

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\alpha)$ under mild assumptions

• $x \in (0, 1/2)$ depends on pref. attachment strength

(num of nodes
$$1-4x$$
)

- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\beta_2)$ under mild assumptions
 - $x \in (0, 1/2)$ depends on pref. attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.

(num of nodes
$$1-4x$$
)

- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on pref. attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for $q \ge 2$ if 1 - 2qx > 0

Phase transition

The limiting degree distribution has ...

finite variance

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$ increasing preferential attachment

infinite variance

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts •
- 2005] and [Kahle 2009]

Identify the "square count" as the main term with minimal cycle results in [Gal

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

IV. What lies ahead

order of magnitude of expected Betti numbers

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

other non-homogeneous complexes?

What did we learn today?

• Random topology is cool.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> **Cornell University**

arxiv paper

my video about small holes

Thank you!Chunyin Siucs2323@cornell.eduCornell University

arxiv paper

my video about small holes