The Topology of Preferential Attachment

Higher-Order Connectivity of Random Interactions

Chunyin Siu
Cornell University
cs2323@cornell.edu

Probabilists

Statisticians

Network Scientists

Topologist

The Topology of Preferential Attachment

Higher-Order Connectivity of Random Interactions

Chunyin Siu
Cornell University
cs2323@cornell.edu

So, preferential attachment...

- Highly connected hubs

(Stephen Coast

So, preferential attachment...

- Highly connected hubs
- Dense core of hubs?

So, preferential attachment...

- Highly connected hubs
- Dense core of hubs?
- Beyond pairwise connections?
- -> topological properties

Agenda

preferential attachment

Agenda

Agenda

I. Preferential Attachment

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- Scale-freeness and Degree distribution
[Barabasi and Albert 1999; Dorogovtsev, Mendes and Samukhin 2000; Krapivsky, Redner and Leyvraz 2000]

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

finite variance

infinite variance

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et a 2013 , Garavagia and Stegehuis 2019]

(a) $t^{(3-\tau) /(\tau-1)} \log (t)$

Fig 2 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

What do we know?

- subgraph counts [Garavagila and Stegenuis 2019]

Fig 3 of A. Garavaglia and C. Stegehuis (2019) Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

What do we know?

What should we count? And how?

$$
\begin{aligned}
& \therefore \\
& \therefore \\
& \therefore \\
& \therefore
\end{aligned}
$$

909090

Paths from left to right?

Paths from left to right?

- backtracking?

Paths from left to right?

- backtracking?
- concatenating with loops?

II. Into Topology

Counting everything in every dimension all at once

Betti numbers count repeated connections "in all dimensions".

Betti numbers count repeated connections "in all dimensions".

GOOD

"correct" way to count things

Betti numbers count repeated connections "in all dimensions".

GOOD

"correct" way to count things
homological algebra

Betti numbers count repeated connections "in all dimensions".

GOOD \downarrow

"correct" way to count things
hard to write down
homological algebra
hard to do

Betti numbers β_{k}

- Repeated connections?
- Holes?

Betti numbers β_{k}

Count of Holes

$\beta_{1}=1: 1$ loop

$$
\begin{aligned}
& \beta_{1}=0: 0 \text { loop } \\
& \beta_{2}=1: 1 \text { cavity }
\end{aligned}
$$

Betti numbers

Count of Repeated Connections

1 alternative path

0 loop
1 cavity

Betti numbers

Count of (Independent) Repeated Connections

1 alternative path

0 loop
1 cavity

Betti numbers

Count of (Independent) Repeated Connections

1 alternative path

0 alternative path (slide through upper hemisphere) 1 cavity

Betti numbers

Count of (Independent) Repeated Connections

1 alternative path

0 alternative path (slide through upper hemisphere)
1 alternative way to slide a path

Betti numbers count repeated connections "in all dimensions".

Interlude:

Random Walk in the Literature

What Random Topologists Already Know

Tapas of Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Erdos-Renyi graphs

-

\bigcirc

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

-
\bullet

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Phase Transition

[Erdos-Renyi 1960]

many components w.h.p.
connected w.h.p.

Erdos-Renyi Clique Complex

Erdos-Renyi Clique Complex

Betti Numbers

Erdős-Rényi random complex on $n=100$ vertices

computation and plotting done by Zomorodian

Phase Transition

[Erdos-Renyi 1960]

Phase Transition [Kahle 2009, 2014]

Phase Transition
 [Kahle 2009, 2014]

Holes get filled.

Phase Transition
 [Kahle 2009, 2014]

Holes can't form. Holes get filled.

Erdos-Renyi Clique Complex

Geometric Complexes

image credit: Penrose

Geometric Complexes

- Rips
- Cech

image credit: Penrose

Geometric Complexes

- Rips (clique)
- Cech

image credit: Penrose

Geometric Complexes

- Rips (clique)
- Cech

image credit: Penrose

Geometric Complexes

- Rips (clique)
- Cech

image credit: Penrose

Expected Betti numbers at dimension \mathbf{k}

[Kahle 2011]

Expected Betti numbers at dimension \mathbf{k}

[Kahle 2011]

- n, the number of points

Expected Betti numbers at dimension \mathbf{k}

 [Kahle 2011]- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

$$
O\left(\omega^{k} e^{-c \omega} n\right)
$$

$$
\omega=1
$$

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

Functional Convergence at dimension k?

[Thomas and Owada 2020]

Functional Convergence at dimension k?
 [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Functional Convergence at dimension k?
 [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Functional Convergence at dimension k? [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

all log terms and constants forgone

Functional Convergence at dimension k? [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Geometric Complexes

image credit: Penrose

Bernoulli Bond Percolation

Bernoulli Bond Percolation

Phase Transition
 [Harris 1960, Kesten 1980]

Phase Transition
 [Harris 1960, Kesten 1980]

Giant Cycles?

Bernoulli Bond Percolation

Phase Transition
 [Duncan-Kahle-Schweinhart, 2021]

Tapas at Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Betti numbers count repeated connections "in all dimensions".

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth
- outlier

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.
- $c\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right) \leq E\left[\beta_{q}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$ if $1-2 q x>0$

Betti 2

Different curves, different random seeds.

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

finite variance

infinite variance

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

unbounded $E\left[\beta_{3}\right]$
unbounded $E\left[\beta_{4}\right]$

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ In practice???

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

IV. What lies ahead
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
parameter estimation?
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu cs2323@cornell.edu Cornell University

Thank you!

Chunyin Siu
 cs2323@cornell.edu

Cornell University

my video about small holes

