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• Highly connected hubs


• Dense core of hubs?


• Beyond pairwise connections?


• —> topological properties

So, preferential attachment…

 
(Stephen Coast 

https://www.fractalus.com/steve/stuff/ipmap/)
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I. Preferential Attachment



[Albert and Barabasi 1999]
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Preferential Attachment
[Albert and Barabasi 1999]
P(attaching to v)  degree + a tuning parameter  ∝ δ

rich-get-richer effect
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What do we know?

• Scale-freeness and Degree distribution 
[Barabasi and Albert 1999; Dorogovtsev, Mendes and Samukhin 2000; Krapivsky, Redner and Leyvraz 2000]

pmf of degree distribution

Fig 8.3 of R. Hofstad (2013). 
Random Graphs and Complex Networks. 
https://doi.org/10.1017/9781316779422

https://doi.org/10.1017/9781316779422
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Phase transition

finite variance
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P(attaching to v)  degree +  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infinite variance

The limiting degree distribution has …



What do we know?

• triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013, Garavaglia and 
Stegehuis 2019]

Fig 2 of A. Garavaglia and C. Stegehuis (2019).

Subgraphs in Preferential Attachment Models. 
https://doi.org/10.1017/apr.2019.36

https://doi.org/10.1017/apr.2019.36


What do we know?

• subgraph counts [Garavaglia and Stegehuis 2019]

Fig 3 of A. Garavaglia and C. Stegehuis (2019).

Subgraphs in Preferential Attachment Models. 
https://doi.org/10.1017/apr.2019.36

https://doi.org/10.1017/apr.2019.36


What do we know?

degree distribution triangle counts subgraph counts



What should we count? 
And how?
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• backtracking?



Paths from left to right?

• backtracking?


• concatenating with loops?



II. Into Topology
Counting everything in every dimension all at once



Betti numbers count repeated connections “in all dimensions”.



Betti numbers count repeated connections “in all dimensions”.

GOOD

“correct” way to count things
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Betti numbers count repeated connections “in all dimensions”.

GOOD BAD

“correct” way to count things hard to write down

homological algebra hard to do



Betti numbers βk

• Repeated connections?


• Holes?



Betti numbers βk
Count of Holes

1 loop 0 loop
1 cavity

β1 = 1 : β1 = 0 :
β2 = 1 :
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Betti numbers
Count of (Independent) Repeated Connections

1 alternative path 0 alternative path (slide through upper hemisphere)
1 alternative way to slide a path



Betti numbers count 
repeated connections “in all dimensions”.



Interlude: 

Random Walk in the Literature
What Random Topologists Already Know



Tapas of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation
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Phase Transition
[Erdos-Renyi 1960]

p

0 1
1
n

many components w.h.p. connected w.h.p.

all log terms and constants forgone

n = number of nodes
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Betti Numbers

computation and plotting done by Zomorodian
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Phase Transition
[Kahle 2009, 2014]

p

0 1
1
n

1
n1/2

1
n1/3

1
n1/4

H0 H1 H2 H3 ...

many components w.h.p.

Holes can’t form. Holes get filled.

n = number of nodes 
all log terms and constants forgone



Erdos-Renyi Clique Complex



Geometric Complexes

image credit: Penrose
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• , where D is the ambient dimension

n

ω = nrD

0 n−1/D

r

ω = 1

Rips:  ∼ ωk+1n
Cech:  ∼ ω2k+1n O(ωke−cωn)

under convexity assumption
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Expected Betti numbers at dimension k
[Kahle 2011]

• , the number of points


• , where D is the ambient dimension


•

n

ω = nrD

Eβk(Cech) ∼ ω2k+1n

0 n−1/D

r

n− 1
D (1 − 1

k + 2 )
n = number of nodes 
all log terms and constants forgone

Eβk(Cech) → 0 Eβk(Cech) → ∞

sparsevery sparse
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Functional Convergence at dimension k?
[Thomas and Owada 2020]

• Cech: weak convergence in finite-dimensional sense

0 n−1/D

r

n− 1
D (1 − 1

k + 2 )

difference of two time-
changed Poisson processes

n = number of nodes 
all log terms and constants forgone

Gaussian process

difference of two time-
changed Brownian motions



Geometric Complexes

image credit: Penrose
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Bernoulli Bond Percolation



Phase Transition
[Harris 1960, Kesten 1980]

no infinite cluster a.s.

has an infinite cluster a.s.
0 11/2

p



Phase Transition
[Harris 1960, Kesten 1980]

no infinite cluster a.s.

has an infinite cluster a.s.

giant component

giant component

0 11/2

p



Giant Cycles?



Bernoulli Bond Percolation





Phase Transition
[Duncan-Kahle-Schweinhart, 2021]

no giant cycle a.a.s.

all giant cycles a.a.s.
0 11/2

p



Tapas at Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation



Betti numbers count 
repeated connections “in all dimensions”.





Clique Complex
aka Flag Complex



III Topology of Preferential 
Attachment



My Lovely Collaborators

Christina Lee Yu Gennady Samorodnitsky Rongyi He (Caroline)
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Expected Betti Number E[βq]

• increasing trend


• concave growth


• outlier

Different curves, different random seeds.

All curves have the same model parameters.



Expected Betti Number E[βq]

•  
under mild assumptions
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c(num of nodes1−4x) ≤ E[β2] ≤ C(num of nodes1−4x)

x ∈ (0,1/2)

Different curves, different random seeds.

All curves have the same model parameters.
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Expected Betti Number E[βq]

•  
under mild assumptions


•  depends on pref. attachment strength


• If , then .


•  
for  if 

c(num of nodes1−4x) ≤ E[β2] ≤ C(num of nodes1−4x)

x ∈ (0,1/2)

1 − 4x < 0 E[β2] ≤ C

c(num of nodes1−2qx) ≤ E[βq] ≤ C(num of nodes1−2qx)
q ≥ 2 1 − 2qx > 0

Different curves, different random seeds.

All curves have the same model parameters.
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Phase transition

unbounded expected Betti number at dimension 1

0 12/3 4/5 6/7  
increasing 
preferential 
attachment

−δ/m

unbounded E[β3]

…

Recall 
P(attaching to v)  degree +  
m = number of edges per new node

∝ δ

unbounded E[β2]

unbounded E[β4]

Recall 
E[β2] ≈ num of nodes1−4x
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β2 = 1 β2 = 2 β2 = 3

Proof of E[β2] ≈ num of nodes1−4x
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Subtleties

• Need homological algebra to relate Betti numbers with counts


• Identify the “square count” as the main term with minimal cycle results in [Gal 
2005] and [Kahle 2009]


• Generalize minimal cycle results in the language of homological algebra


• Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large 
class of subgraphs


•



Theorem:  
In practice???

E[β2] ≈ num of nodes1−4x
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E[β2] ≈ num of nodes1−4x

log E[β2] ≈ (1 − 4x)log(num of nodes)



E[β2] ≈ num of nodes1−4x

log E[β2] ≈ (1 − 4x)log(num of nodes)



IV. What lies ahead
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order of magnitude of 
expected Betti numbers

parameter estimation?

simplicial preferential 
attachment?

homotopy connectedness 
of the infinite complex?

other non-homogeneous 
complexes?
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What did we learn today?

• Random topology is cool.


• Preferential attachment graph has interesting topology.


• More interesting things are waiting to be discovered.



Chunyin Siu         cs2323@cornell.edu 
Cornell University

arxiv paper my video about small holes

mailto:cs2323@cornell.edu


Thank you!
Chunyin Siu         cs2323@cornell.edu 
Cornell University

arxiv paper my video about small holes

mailto:cs2323@cornell.edu

