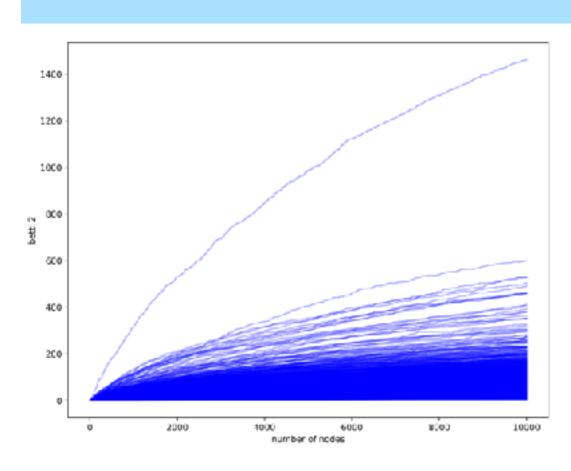
Topology of Scale-Free Complexes — Homology & Homotopy

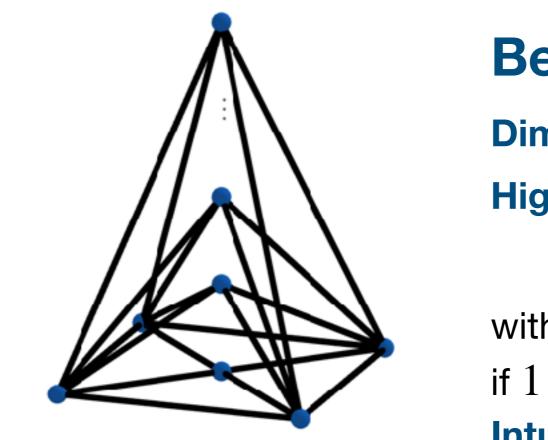
<u>cs2323@cornell.edu</u> **Cornell University** Chunyin Siu

joint work with Gennady Samorodnitsky, Christina Yu, Caroline He and Avian Misra

Preferential Attachment Clique Complexes

Inductively built random graph with T nodes	Let x
Each node v connected to m previous nodes	Then
$P(v \rightarrow j) \propto \deg j + \delta$, with tuning parameter $\delta \in (-m,0)$	attac
Collapse repeated edges and build clique complex	P(T





evolution of β_2 as the number of nodes increases

repeatedly coned squares

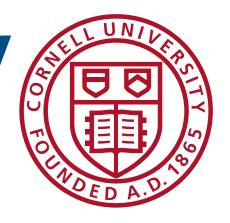
Homotopy-Connectedness of Infinite Complexes

Strong Preferential Attachment $X^{(\infty)}$ is *q*-homotopy-connected almost surely if $x \leq (2q+2)^{-1}$. **Weak Preferential Attachment** $\beta_q(X^{(\infty)}; \text{field}) = \infty \text{ almost surely if } (2q+2)^{-1} < x \le (2q)^{-1}.$ Intuition Each small subset of nodes eventually has a common neighbor.

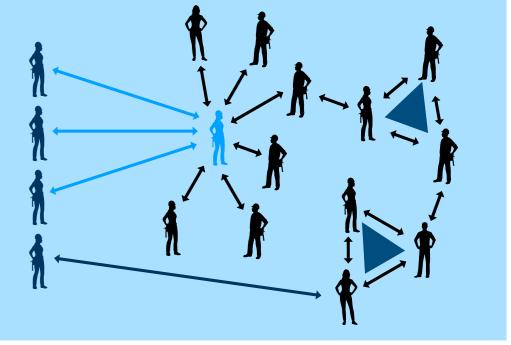
Proof Techniques

•Observe the clique complex is an iterated mapping cone.

- •Apply minimal-cycle [Kahle 2009] and graph-counting [Garavaglia Steghuis 2019] arguments.
- Use Barmark's criterion for homotopy-connectedness [Farber, 2023



 $x = 1 - (2 + \delta/m)^{-1} \in (0, 1/2).$ n x decreases with the preferential chment strength, as \rightarrow early node) $\approx T^{-x}$.

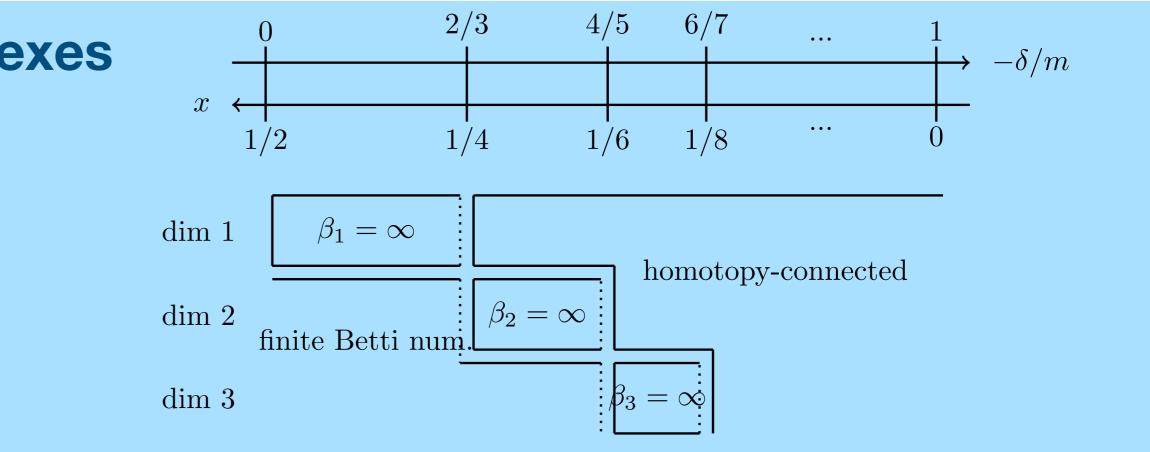


Betti Numbers of Finite Complexes

Dimension 1 $\beta_1(X^{(T)}) = (m-1)T + o(T)$ with high prob. Higher Dimensions Let $x = 1 - (2 + \delta/m)^{-1}$. For $q \ge 2$, $c_{\varepsilon}T^{1-2qx} \leq \beta_{q}(X^{(T)}) \leq C_{\varepsilon}T^{1-2qx}$

with probability at least $1 - \varepsilon$ for some constants $c_{\varepsilon}, C_{\varepsilon} > 0$ if 1 - 2qx > 0.

Intuition Coned squares dominate; boundaries are rare.



	Preprint on Homology of Finite Complexes •Siu C., Samorodnitsky G., Yu C.L. and He R.: The asymptotic of the expected Betti numbers of preferential attachment clique complexes (2023)
	Cited Works on this Poster
and	•Farber M.: Large simplicial complexes: universality, randomness, and ampleness. <i>Journal of Applied and Computational Topology</i> (2023).
3].	 Garavaglia A. and Steghuis C.: Subgraphs in preferential attachment models. Advances in Applied Probability,51(3), 898 — 926 (2019). Kahle M.: Topology of random clique complexes. Discrete Mathematics, 309(6): 1658 — 1671 (2009)