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Preferential Attachment Clique Complexes

Betti Numbers of Finite Complexes

Homotopy-Connectedness of Infinite Complexes

Proof Techniques 
•Observe the clique complex is an iterated mapping cone.

•Apply minimal-cycle [Kahle 2009] and graph-counting [Garavaglia and 
Steghuis 2019] arguments.

•Use Barmark’s criterion for homotopy-connectedness [Farber, 2023].
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evolution of  as the number 
of nodes increases

β2
repeatedly coned squares

Dimension 1  with high prob. 

Higher Dimensions Let . For ,





with probability at least  for some constants  
if .

Intuition Coned squares dominate; boundaries are rare.

β1(X(T)) = (m − 1)T + o(T )
x = 1 − (2 + δ/m)−1 q ≥ 2

cεT1−2qx ≤ βq(X(T)) ≤ CεT1−2qx

1 − ε cε, Cε > 0
1 − 2qx > 0

Inductively built random graph with T nodes

Each node v connected to m previous nodes


, with tuning parameter 

Collapse repeated edges and build clique complex
P(v → j) ∝ deg j + δ δ ∈ (−m,0)

Strong Preferential Attachment

 is q-homotopy-connected almost surely if .


Weak Preferential Attachment

 almost surely if .


Intuition 
Each small subset of nodes eventually has a common neighbor.

X(∞) x ≤ (2q + 2)−1

βq(X(∞); field) = ∞ (2q + 2)−1 < x ≤ (2q)−1

Let .

Then x decreases with the preferential 
attachment strength, as


.

x = 1 − (2 + δ/m)−1 ∈ (0,1/2)

P(T → early node) ≈ T−x
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