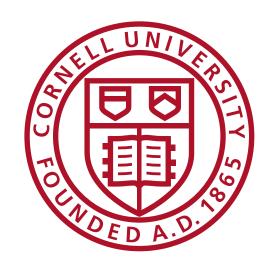
Betti Numbers of Preferential Attachment Complexes

Chunyin Siu <u>cs2323@cornell.edu</u> Cornell University joint work with Gennady Samorodnitsky, Christina Yu and Caroline He



Preferential Attachment Clique Complexes

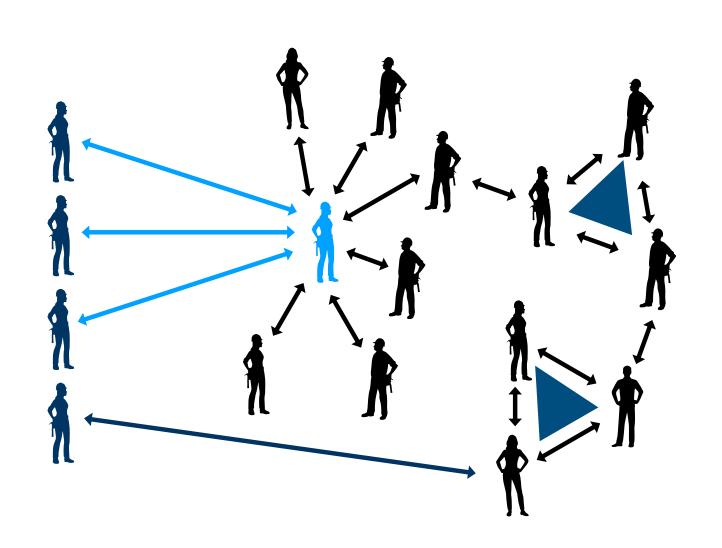
- Inductively built random graph with T nodes
- •Each node *v* connected to *m* previous nodes
- • $P(v \to j) \propto \deg j + \delta$, with tuning parameter $\delta \in (-m,0)$
- •Collapse repeated edges and build clique complex

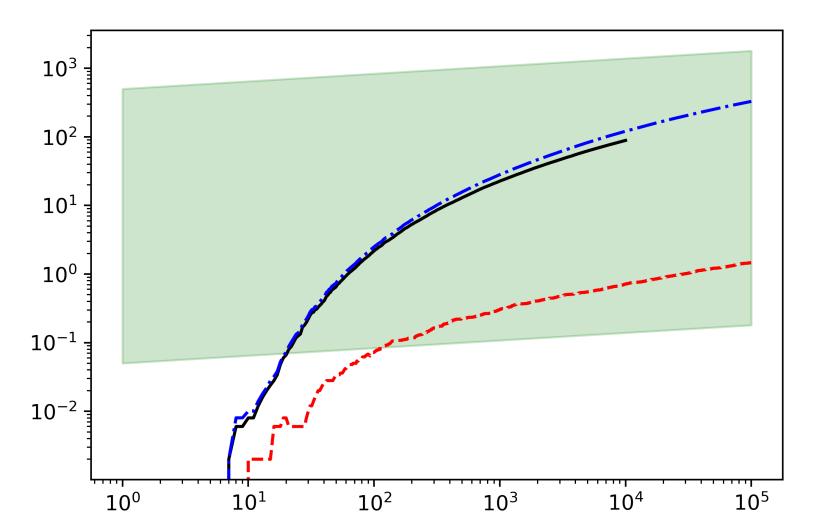
Evolution of Betti Numbers

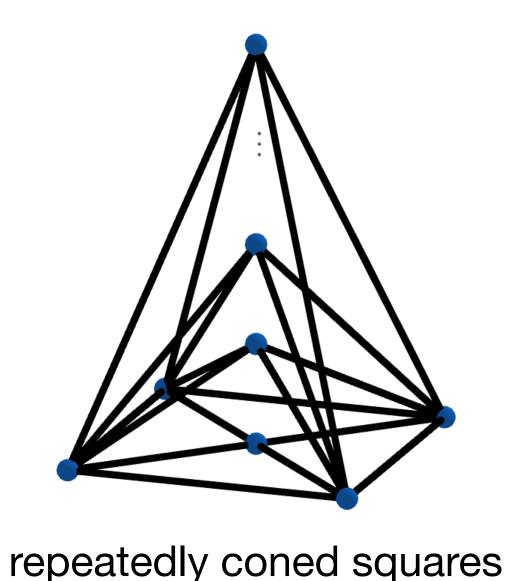
Dimension 1 $E[\beta_1] = (m-1)T + o(T)$

Higher Dimensions Let $\chi=1-(2+\delta/m)^{-1}$. For $q\geq 2$, $cT^{1-2q\chi}\leq E[\beta_q]\leq CT^{1-2q\chi}$

for some constants c, C > 0 if $1 - 2q\chi > 0$ and $m \ge 2q$.







The evolution of the average β_2 as the number of nodes increases The dotted curves are bounds on the average β_2

The slope of the shaded region is the asymptotic slope

Intuition?

- Coned squares dominate. So do their higher-dimensional analogues.
- •Boundaries are rare because they are more complicated.

How to Show?

- •Localize the computation with a mapping cone argument.
- •Characterize cycles by a minimal-cycle [Kahle 2009] argument.
- Apply graph-counting [Garavaglia and Steghuis 2019] arguments.

In Human Language?

- Sublinear growth
- Gradually decreasing topological complexity
- •Complexity increases with the rich-get-richer effect.

What's Next?

- •Tail behavior?
- Computable local invariants?

Cited Works on this Poster

•Garavaglia A. and Steghuis C.: Subgraphs in preferential attachment models. *Advances in Applied Probability*,51(3), 898 — 926 (2019).

•Kahle M.: Topology of random clique complexes. *Discrete Mathematics*, 309(6): 1658 — 1671.