### The Topology of Preferential Attachment **How Random Interaction Begets Holes**

**Chunyin Siu Cornell University** cs2323@cornell.edu



## **AATRN this Wed?**



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

• Just a bouquet of circles?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

—> random topology



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

- —> random topology
  - the random process of preferential attachment



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)





random topology





random topology

#### preferential attachment





random topology

## preferential attachment





## Yell at me whenever

### **I. A Probabilist's Apology** Why Random Topology





#### plots generated by Andrey Yao



### Size is Signal



### Or is it?



### Or is it?





# Size is Signal?

## Surprise Size is Signal.

### Random points don't do that.





## Signal is what is not random.

### Signal is what is not random. So what is random?

#### Interlude: Random Walk in the Literature What Random Topologists Already Know

### Afternoon Tea of Random Topology





#### Erdo-Renyi Complexes



Geometric Complexes

**Topological Percolation** 













































#### Phase Transition [Erdos-Renyi 1960]

many components w.h.p.

0

#### connected w.h.p.



pall log terms and constants forgone

### Erdos-Renyi Clique Complex





#### **Betti Numbers**







computation and plotting done by Zomorodian
## Phase Transition [Erdos-Renyi 1960]

#### 0 many components w.h.p.

#### connected w.h.p.

 $\frac{1}{n}$ 

all log terms and constants forgone

p

1

## Phase Transition [Kahle 2009, 2014]

#### $H_0$

0 many components w.h.p.



all log terms and constants forgone

## Phase Transition [Kahle 2009, 2014]

#### $H_0$

0 many components w.h.p.



all log terms and constants forgone

## **Phase Transition** [Kahle 2009, 2014]



 $H_0$ 

many components w.h.p. 



all log terms and constants forgone

#### **Fundamental Group** [Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

#### $H_0$

0 many components w.h.p.



all log terms and constants forgone



## **Geometric Complexes**



image credit: Penrose

• *n*, the number of points

- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension

- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension





- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension

Rips: 
$$\sim \omega^{k+1}n$$
  
Cech:  $\sim \omega^{2k+1}n$   
sparse

 $O(\omega^k e^{-c\omega}n)$ 

under convexity assumption

 $\omega = 1$ 

dense

- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



 $O(\omega^k e^{-c\omega}n)$ 

under convexity assumption

 $\omega = 1$ 

dense

- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



- *n*, the number of points
- $\omega = nr^D$ , where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



$$E\beta_{k}(\text{Cech}) \to \infty$$

$$-\frac{1}{D}\left(1 - \frac{1}{k+2}\right) \text{ sparse } n^{-1/D}$$

## **Maximally Persistent Cycles**

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_2.jpeg)

image credit: Andrey Yao

![](_page_51_Picture_4.jpeg)

## **Maximally Persistent Cycles**

n points in expectation

k-cycle

## **Maximally Persistent Cycles** [Bobrowski-Kahle-Skraba 2017]

n points in expectation k-cycle

![](_page_53_Picture_2.jpeg)

# $c\left(\frac{\log n}{\log\log n}\right)^{1/k} \le \max \text{ persistence} \le C\left(\frac{\log n}{\log\log n}\right)^{1/k}$ a.a.s

![](_page_53_Picture_4.jpeg)

## **Geometric Complexes**

![](_page_54_Picture_1.jpeg)

image credit: Penrose

## **Bernoulli Bond Percolation**

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

## **Bernoulli Bond Percolation**

![](_page_56_Figure_8.jpeg)

## Phase Transition [Harris 1960, Kesten 1980]

0

#### no infinite cluster a.s.

![](_page_57_Figure_2.jpeg)

## Phase Transition [Harris 1960, Kesten 1980]

0

#### giant component no <del>infinite cluster</del> a.s.

![](_page_58_Figure_2.jpeg)

![](_page_59_Picture_1.jpeg)

## **Bernoulli Bond Percolation**

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_0.jpeg)

## **Phase Transition** [Duncan-Kahle-Schweinhart, 2021]

0

no giant cycle a.a.s.

![](_page_62_Figure_2.jpeg)

![](_page_62_Figure_3.jpeg)

# Afternoon Tea of Random Topology

![](_page_63_Figure_1.jpeg)

![](_page_63_Picture_2.jpeg)

#### Erdo-Renyi Complexes

![](_page_63_Figure_5.jpeg)

Geometric Complexes

**Topological Percolation** 

# II. Preferential Attachment Beyond independence and homogeneity

## Independent and identically distributed?

## Independent and identically distributed?

![](_page_66_Figure_9.jpeg)

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

![](_page_67_Figure_1.jpeg)

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

![](_page_68_Picture_1.jpeg)

![](_page_69_Picture_1.jpeg)

![](_page_69_Picture_2.jpeg)

P(attaching to v)  $\propto$  degree +  $\delta$  = 4 +  $\delta$ 

![](_page_70_Picture_2.jpeg)

![](_page_70_Picture_3.jpeg)

P(attaching to v)  $\propto$  degree + a tuning parameter  $\delta$ 

![](_page_71_Picture_3.jpeg)
### **Preferential Attachment** [Albert and Barabasi 1999]

### P(attaching to v) $\propto$ degree + a tuning parameter $\delta$





### **Preferential Attachment** [Albert and Barabasi 1999]





 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

### **Clique Complex** aka Flag Complex





# III Topology of Preferential Attachment

# My Lovely Collaborators





Christina Lee Yu

Gennady Samorodnitsky



### Rongyi He (Caroline)





increasing trend





- increasing trend
- concave growth





- increasing trend
- concave growth
- outlier





### • $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

•  $x \in (0, 1/2)$  depends on model parameters



- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions
  - $x \in (0, 1/2)$  depends on model parameters
  - If 1 4x < 0, then  $E[\beta_2] \le C$ .



- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$ under mild assumptions
  - $x \in (0, 1/2)$  depends on model parameters
  - If 1 4x < 0, then  $E[\beta_2] \le C$ .
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for  $q \ge 2$  if 1 - 2qx > 0





Recall P(attaching to v)  $\propto$  degree +  $\delta$ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment







Recall P(attaching to v)  $\propto$  degree +  $\delta$ m = number of edges per new node





 $-\delta/m$ 









Recall P(attaching to v)  $\propto$  degree +  $\delta$ m = number of edges per new node







Recall P(attaching to v)  $\propto$  degree +  $\delta$ m = number of edges per new node











Theorem:  $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?



# **Proof of** $E[\beta_2] \approx \text{num of nodes}^{1-4x}$



# **Proof of** $E[\beta_2] \approx \text{num of nodes}^{1-4x}$





# **Proof of** $E[\beta_2] \approx \text{num of nodes}^{1-4x}$







Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts
  - adding a vertex = construct mapping cone

- Need homological algebra to relate Betti numbers with counts
  - adding a vertex = construct mapping cone





- Need homological algebra to relate Betti numbers with counts
  - adding a vertex = construct mapping cone
  - $\beta_q(\text{new}) \le \beta_q(\text{old}) + \beta_{q-1}(\text{link})$





• Need homological algebra to relate Betti numbers with counts

• 
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$



- Need homological algebra to relate Betti numbers with counts
  - $\beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]





- Need homological algebra to relate Betti numbers with lacksquarecounts
  - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra •



- Need homological algebra to relate Betti numbers with ulletcounts
  - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

• 
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -



 $-\beta_q(\text{old}) \le \beta_{q-1}(\text{link})$ 



- Need homological algebra to relate Betti numbers with counts
  - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

• 
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -






# Subtleties

- Need homological algebra to relate Betti numbers with counts
  - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

• 
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

 Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs







Theorem:  $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???



## $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$





## $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$



# $E[\beta_2] \approx \text{num of nodes}^{1-4x}$



# IV. What lies ahead

# order of magnitude of expected Betti numbers

## order of magnitude of expected Betti numbers

#### parameter estimation?

## order of magnitude of expected Betti numbers



#### parameter estimation?

## order of magnitude of expected Betti numbers

## simplicial preferential attachment?



#### parameter estimation?

## order of magnitude of expected Betti numbers

## simplicial preferential attachment?

#### other non-homogeneous complexes?





# What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

#### **Chunyin Siu** <u>cs2323@cornell.edu</u> **Cornell University**







my video about small holes

# Thank you!Chunyin Siucs2323@cornell.eduCornell University



arxiv paper





my video about small holes

# **Phase transition**







 $-\delta/m$ 

# Phase transition







# Phase transition



unbounded expected Betti number at dimension 1

## $\pi_1(X_\infty) \cong 0$ , unbounded $E[\beta_2]$

 $\pi_2(X_{\infty}) \cong 0$ , unbounded  $E[\beta_3]$ 

 $\pi_3(X_\infty) \cong 0$ , unbounded  $E[\beta_4]$ 





tight?



| ] |
|---|
|   |
|   |





