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So, preferential attachment...

e Just a bouquet of circles? :

 \What Is intrinsic and what Is just
random fluctuation?

e —> random topology |

 the random process of
preferential attachment

(Stephen Coast
https://www.fractalus.com/steve/stuff/ipmap/)
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Yell at me whenever



l. A Probabilist’s Apology

Why Random Topology
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Size Is Signal
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Oris it?

shadowed small square. clean
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Size is Signal?



Surprise
Stze Is Signal.




Random points don’t do that.

shadowed small square. clean

e

' -

-

"ttt

shadowed small square. clean. dist

T T T T T T T T
0.0 0.2 0.4 0.6 0.X 1.0 1.2 1.4 1.6

Birt.l;



Signal is what is not random.



Signal is what is not random.
So what is random?



Interlude:

Random Walk in the Literature

What Random Topologists Already Know



Afternoon Tea of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation
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Phase Transition
[Erdos-Renyi 1960}

many components w.h.p. connected w.h.p.
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all log terms and constants forgone
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Betti Numbers

Erdos—Rényi random complex on n=1700 vertices
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Phase Transition
[Erdos-Renyi 1960}
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Phase Transition

[Kahle 2009, 2014}
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Phase Transition

[Kahle 2009, 2014}
Holes get filled.
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Phase Transition

[Kahle 2009, 2014]
Holes can’t form.  Holes get filled.
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i—l—l—l—l—‘ P

1 1 1 1
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all log terms and constants forgone



Fundamental Group
[Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]
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Erdos-Renyi Clique Complex




Geometric Complexes

image credit: Penrose
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Expected Betti numbers at dimension k
[Kahle 2011]

e n, the number of points

c W = nrD, where D Is the ambient dimension
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Expected Betti numbers at dimension k
[Kahle 2011]

e n, the number of points

c W = nrD, where D Is the ambient dimension

» I, (Cech) ~ 0w n

Ep(Cech) = 0 Ep,(Cech) = o

very sparse | 1 SParse —1/D
0 _3(1 k+2) n

n = number of nodes
all log terms and constants forgone



Maximally Persistent Cycles
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Maximally Persistent Cycles
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Maximally Persistent Cycles
[Bobrowski-Kahle-Skraba 2017]

n points in expectation

k-cycle

1/k 1/k

logn | logn

c| ——— < max persistence < C —)
(log logn) (log logn

d.d.S.



Geometric Complexes

image credit: Penrose



Bernoulli Bond Percolation
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Bernoulli Bond Percolation




Phase Transition
[Harris 1960, Kesten 1980]

no Iinfinite cluster a.s.
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Phase Transition
[Harris 1960, Kesten 1980]

giant component
no rfirte-cluster a.s.
T 1>
0 1/2 1

has an trfinite-cluster a.s.
giant component



Giant Cycles?



Bernoulli Bond Percolation







Phase Transition
[Duncan-Kahle-Schweinhart, 2021]

no giant cycle a.a.s.

B —

0 1/2 1
all giant cycles a.a.s.



Afternoon Tea of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation



Il. Preferential Attachment

Beyond independence and homogeneity
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Preferential Attachment
[Albert and Barabasi 1999]
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I
P(attaching to v) x degree + 0 =4 + 0 S 3 7 > k
j———— 1




Preferential Attachment
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Preferential Attachment
[Albert and Barabasi 1999]
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Preferential Attachment
[Albert and Barabasi 1999]

P(attaching to v) & degree + a tuning parameter o ﬁ

ﬁ e

rich-get-richer effect

i
A
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What do we know?

* triangle counts and clustering coefficient [Bollobas and Ridden 2002,
Prokhorenkova et al 2013]

* subgraph counts [Garavaglia and Steghuis 2019]

e and more...



Clique Complex

aka Flag Complex
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Expected Betti Number L[/ ]
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Expected Betti Number L[/ ]

* Increasing trend
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Expected Betti Number L[/ ]

+ c(num of nodes' =) < E[f,] < C(num of nodes' ~*)

under mild assumptions

« x € (0,1/2) depends on model parameters
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+ c(num of nodes' =) < E[f,] < C(num of nodes' ~*)

« x € (0,1/2) depends on model parameters

. If 1 — 4x < 0, then E[3,] < C.

. c(num of nodes! %%") < E[ﬁq] < C(num of nodes! —2%%)
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Proof of E£[f5,]

num of nodes!

—4x
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Subtleties

* Need homological algebra to relate Betti numbers with
counts

. p(new) — p (old) < f,_(link)

* |dentify the “square count” as the main term with minimal
cycle results in [Gal 2005] and [Kahle 2009] 6

* (GGeneralize minimal cycle results with homological algebra

. 1= (link, $971) — B (link) < f_(new) — f (old) < §,_,(link)

* Apply graph counting result in [Garavaglia and Stegehuis
2019] on a large class of subgraphs
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In practice???
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IV. What lies ahead


















What did we learn today?

 Random topology is cool.
* Preferential attachment graph has interesting topology.

 More interesting things are waiting to be discovered.
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Recall

= - P(attaching to v) o< degree + 0
Phase tranSItlon M = number of edges per new node

0 2/3. 4/54 o6/7 _—olm
iIncreasing
preferential
attachment

unbounded expected Betti number at dimension 1
(X)) = 0, unbounded E|[f,]
7, (X,,) = 0, unbounded E| /] tight?

(X)) = 0, unbounded E[f,]















