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• Just a bouquet of circles?


• What is intrinsic and what is just 
random fluctuation?


• —> random topology


• the random process of 
preferential attachment
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I. A Probabilist’s Apology
Why Random Topology
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Size is Signal



Or is it?



Or is it?



Size is Signal?
Surprise            .



Size is Signal.
Surprise            .



Random points don’t do that.
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Interlude: 

Random Walk in the Literature
What Random Topologists Already Know



Afternoon Tea of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation
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Phase Transition
[Erdos-Renyi 1960]
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Betti Numbers

computation and plotting done by Zomorodian
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⇡1 free ⇡1 hyperbolic

⇡1 trivial

Fundamental Group
[Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

many components w.h.p.
all log terms and constants forgone



Erdos-Renyi Clique Complex



Geometric Complexes

image credit: Penrose
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Expected Betti numbers at dimension k
[Kahle 2011]

• , the number of points


• , where D is the ambient dimension


•

n

ω = nrD

Eβk(Cech) ∼ ω2k+1n

0 n−1/D

r

n− 1
D (1 − 1

k + 2 )
n = number of nodes 
all log terms and constants forgone

Eβk(Cech) → 0 Eβk(Cech) → ∞

sparsevery sparse



Maximally Persistent Cycles

image credit: Andrey Yao
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Maximally Persistent Cycles
[Bobrowski-Kahle-Skraba 2017]

n points in expectation


k-cycle


 
a.a.s.

c ( log n
log log n )

1/k

≤ max persistence ≤ C ( log n
log log n )

1/k



Geometric Complexes

image credit: Penrose
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Phase Transition
[Harris 1960, Kesten 1980]

no infinite cluster a.s.
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Phase Transition
[Harris 1960, Kesten 1980]

no infinite cluster a.s.

has an infinite cluster a.s.

giant component

giant component

0 11/2

p



Giant Cycles?



Bernoulli Bond Percolation





Phase Transition
[Duncan-Kahle-Schweinhart, 2021]

no giant cycle a.a.s.

all giant cycles a.a.s.
0 11/2

p



Afternoon Tea of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation



II. Preferential Attachment
Beyond independence and homogeneity
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Preferential Attachment
[Albert and Barabasi 1999]
P(attaching to v)  degree + a tuning parameter  ∝ δ

rich-get-richer effect
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What do we know?

• triangle counts and clustering coefficient [Bollobas and Ridden 2002, 
Prokhorenkova et al 2013]


• subgraph counts [Garavaglia and Steghuis 2019]


• and more…



Clique Complex
aka Flag Complex



III Topology of Preferential 
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Christina Lee Yu Gennady Samorodnitsky Rongyi He (Caroline)
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Expected Betti Number E[βq]

•  
under mild assumptions


•  depends on model parameters


• If , then .


•  
for  if 

c(num of nodes1−4x) ≤ E[β2] ≤ C(num of nodes1−4x)

x ∈ (0,1/2)

1 − 4x < 0 E[β2] ≤ C

c(num of nodes1−2qx) ≤ E[βq] ≤ C(num of nodes1−2qx)
q ≥ 2 1 − 2qx > 0
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0 12/3 4/5 6/7  
increasing 
preferential 
attachment

−δ/m

unbounded E[β3]

…

Recall 
P(attaching to v)  degree +  
m = number of edges per new node
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β2 = 1 β2 = 2 β2 = 3

Proof of E[β2] ≈ num of nodes1−4x
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log E[β2] ≈ (1 − 4x)log(num of nodes)



E[β2] ≈ num of nodes1−4x
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order of magnitude of 
expected Betti numbers

parameter estimation?

simplicial preferential 
attachment?

homotopy connectedness 
of the infinite complex?

other non-homogeneous 
complexes?



What did we learn today?

• Random topology is cool.


• Preferential attachment graph has interesting topology.


• More interesting things are waiting to be discovered.
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Phase transition

unbounded expected Betti number at dimension 1

0 12/3 4/5 6/7  
increasing 
preferential 
attachment

−δ/m

, unbounded π2(X∞) ≅ 0 E[β3]

…

Recall 
P(attaching to v)  degree +  
m = number of edges per new node

∝ δ

, unbounded π1(X∞) ≅ 0 E[β2]

, unbounded π3(X∞) ≅ 0 E[β4]

tight?










