The Topology of Preferential Attachment

How Random Interaction Begets Holes

Chunyin Siu
Cornell University
cs2323@cornell.edu

AATRN this Wed?

So, preferential attachment...

So, preferential attachment...

- Just a bouquet of circles?

(Stephen Coast
https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?
- -> random topology

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?
- $->$ random topology
- the random process of preferential attachment

Agenda

random topology

Agenda

Agenda

Yell at me whenever

I. A Probabilist's Apology

Why Random Topology

Size is Signal

Or is it?

Or is it?

Size is Signal?

Surprise Size is Signal.

Random points don't do that.

Signal is what is not random.

Signal is what is not random. So what is random?

Interlude:

Random Walk in the Literature

What Random Topologists Already Know

Afternoon Tea of Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Erdos-Renyi graphs

-

\bigcirc

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

-
\bullet

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Phase Transition

[Erdos-Renyi 1960]

many components w.h.p.
connected w.h.p.

all log terms and constants forgone

Erdos-Renyi Clique Complex

Erdos-Renyi Clique Complex

Betti Numbers

Erdős-Rényi random complex on $n=100$ vertices

computation and plotting done by Zomorodian

Phase Transition

[Erdos-Renyi 1960]

Phase Transition [Kahle 2009, 2014]

Phase Transition
 [Kahle 2009, 2014]

Holes get filled.

Phase Transition
 [Kahle 2009, 2014]

Holes can't form. Holes get filled.

Fundamental Group
 [Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

Erdos-Renyi Clique Complex

Geometric Complexes

image credit: Penrose

Expected Betti numbers at dimension \mathbf{k}

[Kahle 2011]

Expected Betti numbers at dimension \mathbf{k}

[Kahle 2011]

- n, the number of points

Expected Betti numbers at dimension \mathbf{k}

 [Kahle 2011]- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

$$
O\left(\omega^{k} e^{-c \omega} n\right)
$$

$$
\omega=1
$$

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

Expected Betti numbers at dimension \mathbf{k}
 [Kahle 2011]

- n, the number of points
- $\omega=n r^{D}$, where D is the ambient dimension
- $E \beta_{k}($ Cech $) \sim \omega^{2 k+1} n$

Maximally Persistent Cycles

Maximally Persistent Cycles

n points in expectation
k-cycle

Maximally Persistent Cycles

[Bobrowski-Kahle-Skraba 2017]

n points in expectation
k-cycle
$c\left(\frac{\log n}{\log \log n}\right)^{1 / k} \leq \max$ persistence $\leq C\left(\frac{\log n}{\log \log n}\right)^{1 / k}$ a.a.s.

Geometric Complexes

image credit: Penrose

Bernoulli Bond Percolation

Bernoulli Bond Percolation

Phase Transition
 [Harris 1960, Kesten 1980]

Phase Transition
 [Harris 1960, Kesten 1980]

Giant Cycles?

Bernoulli Bond Percolation

Phase Transition
 [Duncan-Kahle-Schweinhart, 2021]

Afternoon Tea of Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

II. Preferential Attachment

Beyond independence and homogeneity

Independent and identically distributed?

Independent and identically distributed?

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth
- outlier

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on model parameters

Betti 2

Expected Betti Number $E\left[\beta_{q}\right]$

Betti 2

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on model parameters
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on model parameters
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.
- $c\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right) \leq E\left[\beta_{q}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$ if $1-2 q x>0$

Betti 2

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

unbounded $E\left[\beta_{3}\right]$
unbounded $E\left[\beta_{4}\right]$

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone
- $\beta_{q}($ new $) \leq \beta_{q}($ old $)+\beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new $)-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ In practice???

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$
$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

IV. What lies ahead
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
parameter estimation?
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu cs2323@cornell.edu Cornell University

Thank you!

Chunyin Siu
 cs2323@cornell.edu

Cornell University

my video about small holes

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

unbounded $E\left[\beta_{2}\right]$
unbounded $E\left[\beta_{3}\right]$
unbounded $E\left[\beta_{4}\right]$

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

$$
\begin{aligned}
& \pi_{1}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{2}\right] \\
& \pi_{2}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{3}\right] \\
& \\
& \quad \pi_{3}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{4}\right]
\end{aligned}
$$

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

$$
\begin{aligned}
& \pi_{1}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{2}\right] \\
& \quad \pi_{2}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{3}\right] \\
& \quad \pi_{3}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{4}\right]
\end{aligned}
$$

$_$

