The Topology of Preferential Attachment **Higher-Order Connectivity of Random Interactions**

Chunyin Siu Cornell University cs2323@cornell.edu

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

I. Preferential Attachment

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

P(attaching to v) \propto degree + δ = 4 + δ

P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ

• Scale-freeness and Degree distribution [Barabasi and Albert 1999; Dorogovtsev, Mendes and Samukhin 2000; Krapivsky, Redner and Leyvraz 2000]

Fig 8.3 of R. Hofstad (2013). Random Graphs and Complex Networks. https://doi.org/10.1017/9781316779422

Stegehuis 2019]

Fig 2 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013, Garavaglia and

• Subgraph Counts [Garavaglia and Stegehuis 2019]

Fig 3 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

Higer-Order Connectivity?

II. Into Topology **Counting everything in every dimension all at once**

k-dim Betti number β_k = count of k-dim holes = count of k-dim repeated connections

Betti numbers β_k Count of Holes

 $\beta_1 = 1$ **1** loop

Betti numbers β_k **Count of Repeated Connections**

 $\beta_1 = 1$ 1 loop 1 alternative path

k-dim Betti number β_k = count of k-dim holes = count of k-dim repeated connections

Research Network [Salikov et al, 2018]

Co-occurrence complex in Math research paper

Gap in Understanding

Clique Complex aka Flag Complex

III Topology of Preferential Attachment

increasing trend

- increasing trend
- concave growth

- increasing trend
- concave growth
- outlier

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\alpha)$ under mild assumptions

• $x \in (0, 1/2)$ depends on pref. attachment strength

(num of nodes
$$1-4x$$
)

- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\beta_2)$ under mild assumptions
 - $x \in (0, 1/2)$ depends on pref. attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.

(num of nodes
$$1-4x$$
)

- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on pref. attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for $q \ge 2$ if 1 - 2qx > 0

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$

Phase transition

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Phase transition

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

IV. What lies ahead

order of magnitude of expected Betti numbers

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

other non-homogeneous complexes?

What did we learn today?

• Random topology is cool.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu Cornell University

<u>c-siu.github.io</u> cs2323@cornell.edu

arxiv paper

Thank you! **Chunyin Siu Cornell University**

<u>c-siu.github.io</u> cs2323@cornell.edu

arxiv paper

