The Topology of Preferential Attachment

Higher-Order Connectivity of Random Interactions

Chunyin Siu
Cornell University
cs2323@cornell.edu

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

I. Preferential Attachment

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- Scale-freeness and Degree distribution
[Barabasi and Albert 1999; Dorogovtsev, Mendes and Samukhin 2000; Krapivsky, Redner and Leyvraz 2000]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et a 2013 , Garavagia and Stegehuis 2019]

(a) $t^{(3-\tau) /(\tau-1)} \log (t)$

Fig 2 of A. Garavaglia and C. Stegehuis (2019). Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

What do we know?

- subgraph counts [Garavagia and Stegenuis 2019]

Fig 3 of A. Garavaglia and C. Stegehuis (2019) Subgraphs in Preferential Attachment Models. https://doi.org/10.1017/apr.2019.36

Higer-Order Connectivity?

909090

II. Into Topology

Counting everything in every dimension all at once

$$
\begin{gathered}
\text { k-dim Betti number } \beta_{k} \\
=\text { count of } \mathrm{k} \text {-dim holes } \\
=\text { count of } \mathrm{k} \text {-dim repeated connections }
\end{gathered}
$$

Betti numbers β_{k}

Count of Holes

Betti numbers β_{k}

Count of Repeated Connections

$$
\begin{gathered}
\text { k-dim Betti number } \beta_{k} \\
=\text { count of } \mathrm{k} \text {-dim holes } \\
=\text { count of } \mathrm{k} \text {-dim repeated connections }
\end{gathered}
$$

Research Network

[Salikov et al, 2018]

- Co-occurence complex in Math research paper

Gap in Understanding

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth
- outlier

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on pref. attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.
- $c\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right) \leq E\left[\beta_{q}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$ if $1-2 q x>0$

Betti 2

Different curves, different random seeds.

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

unbounded $E\left[\beta_{3}\right]$
unbounded $E\left[\beta_{4}\right]$

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

IV. What lies ahead
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
parameter estimation?
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu
Cornell University

c-siu.github.io cs2323@cornell.edu

Thank you!

Chunyin Siu
Cornell University
c-siu.github.io cs2323@cornell.edu

