Topology of Scale-Free Graphs

How Random Interaction Begets Holes

Chunyin Siu
Cornell University
cs2323@cornell.edu

Topology of Scale-Free Graphs Homoogynad Homotopy

How Random Interaction Begets Holes

Chunyin Siu
Cornell University
cs2323@cornell.edu

So, preferential attachment...

So, preferential attachment...

- topological properties

(Stephen Coast
https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

- topological properties
- random fluctuation?

(Stephen Coast

So, preferential attachment...

- topological properties
- random fluctuation?
- $->$ random topology

Agenda

random topology

Agenda

Agenda

I. A Probabilist's Apology

Why Random Topology and What we Know

Size is Signal

Or is it?

Or is it?

Size is Signal?

Surprise Size is Signal.

Random points don't do that.

Signal is what is not random.

Signal is what is not random. So what is random?

What we know

[not meant to be complete]

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2023
- etc

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- random geometric complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2013
- etc

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2013
- etc
- random geometric complexes
- Kahle 2011
- Kahle and Meckes 2013
- Yogeshwaran and Adler 2015
- Bobrowski et al 2017
- Hiraoka et al 2018
- Thomas and Owada 2021a, b
- Owada and Wei 2022
- etc

II. Preferential Attachment

Beyond independence and homogeneity

Independent and identically distributed?

Independent and identically distributed?

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- degree distribution [Albert and Barabasi 1999]

What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Avhan Misra

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

Betti Number β_{q}

Betti Number β_{q}

Betti 2

Different curves, different random seeds. All curves have the same model parameters.

Betti Number β_{q}

- increasing trend

Different curves, different random seeds. All curves have the same model parameters.

Betti Number β_{q}

- increasing trend
- concave growth

Different curves, different random seeds. All curves have the same model parameters.

Betti Number β_{q}

- increasing trend
- concave growth
- outlier

Different curves, different random seeds. All curves have the same model parameters.

Betti Number β_{q}

Betti 2

- With probability at least $1-\varepsilon$,
- $c_{\varepsilon}\left(\right.$ num of nodes $\left.^{1-4 x}\right) \leq \beta_{2} \leq C_{\varepsilon}\left(\right.$ num of nodes $\left.^{1-4 x}\right)$
- $x \in(0,1 / 2)$ decreases with the preferential attachment strength
- $P[T$ attaches to $i] \propto T^{-x}$

Betti Number β_{q}

Betti 2

- With probability at least $1-\varepsilon$,
- c_{ε} (num of nodes $\xrightarrow{(1-4 x} \leq \beta_{2} \leq C_{\varepsilon}$ (num of nodes $\sqrt{1-4 x}$
- $x \in(0,1 / 2)$ decreases with the preferential attachment strength
- $P[T$ attaches to $i] \propto T^{-x}$
- If $1-4 x<0$, then $\beta_{2} \leq C_{\varepsilon}$.

Betti Number β_{q}

Betti 2

- With probability at least $1-\varepsilon$,
- $c_{\varepsilon}\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq \beta_{2} \leq C_{\varepsilon}\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$
- $x \in(0,1 / 2)$ decreases with the preferential attachment strength
- $P[T$ attaches to $i] \propto T^{-x}$
- If $1-4 x<0$, then $\beta_{2} \leq C_{\varepsilon}$.
- $c_{\varepsilon}\left(\right.$ num of nodes $\left.^{1-2 q x}\right) \leq \beta_{q} \leq C_{\varepsilon}\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$.

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

```
unbounded growth of \(\beta_{1}\left(X_{T}\right)\)
```


Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

unbounded growth of $\beta_{2}\left(X_{T}\right)$

Recall
$\beta_{2} \approx$ num of nodes $^{1-4 x}$
unbounded growth of $\beta_{3}\left(X_{T}\right)$
unbounded growth of $\beta_{4}\left(X_{T}\right)$

Theorem: $\beta_{2} \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $\beta_{2} \approx$ num of nodes ${ }^{1-4 x}$

Proof of $\beta_{2} \approx$ num of nodes ${ }^{1-4 x}$

Proof of $\beta_{2} \approx$ num of nodes ${ }^{1-4 x}$

Homotopy-Connectivity?

Homotopy-Connectivity? $\beta_{2} \approx$ num of nodes ${ }^{1-4 x}$

Pass to infinity

$_$

Will all of these be filled in at infinity?

[Barmak 2023]

- A clique complex is q-homotopy-connected
- if every collection of $2(q+1)$ nodes has a common neighbor.

[Barmak 2023]

- A clique complex is q-homotopy-connected
- if every collection of $2(\mathrm{q}+1)$ nodes has a common neighbor.

Homotopy-Connected

- Almost surely, the infinite preferential attachment complex
. is q-homotopy-connected if $x \leq \frac{1}{2(q+1)}$

Recall:
$x \in(0,1 / 2)$ decreases with the preferential attachment strength $P[T$ attaches to $i] \propto T^{-x}$

Homotopy-Connected

- Almost surely, the infinite preferential attachment complex
. is q-homotopy-connected if $x \leq \frac{1}{2(q+1)}$
- has infinite Betti number at dimension q if $\frac{1}{2(q+1)}<x \leq \frac{1}{2 q}$

Recall:

$x \in(0,1 / 2)$ decreases with the preferential attachment strength $P[T$ attaches to $i] \propto T^{-x}$

Phase Transition

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

unbounded growth of $\beta_{2}\left(X_{T}\right)$

Recall
$\beta_{2} \approx$ num of nodes $^{1-4 x}$
unbounded growth of $\beta_{3}\left(X_{T}\right)$
unbounded growth of $\beta_{4}\left(X_{T}\right)$

- If the preferential attachment effect is strong enough,
- $\beta_{q}\left(X_{T}\right)$ grows sublinearly with high probability
- $\pi_{q}\left(X_{\infty}\right) \cong 0$ almost surely

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu cs2323@cornell.edu Cornell University

Thank you!

Chunyin Siu cs2323@cornell.edu

Cornell University

my video about small holes

Tapas of Random Topology

Erdo-Renyi Complexes

Erdos-Renyi graphs

-

\bigcirc

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

-
\bullet

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Erdos-Renyi graphs

Phase Transition

[Erdos-Renyi 1960]

many components w.h.p.
connected w.h.p.

Erdos-Renyi Clique Complex

Erdos-Renyi Clique Complex

Betti Numbers

Erdős-Rényi random complex on $n=100$ vertices

computation and plotting done by Zomorodian

Phase Transition

[Erdos-Renyi 1960]

Phase Transition [Kahle 2009, 2014]

Phase Transition
 [Kahle 2009, 2014]

Holes get filled.

Phase Transition
 [Kahle 2009, 2014]

Holes can't form. Holes get filled.

Fundamental Group
 [Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

Geometric Complexes

image credit: Penrose

Expected Betti numbers at dimension \mathbf{k}

- Let $\omega=n r^{D}$, where D is the ambient dimension

Expected Betti numbers at dimension \mathbf{k}

[Kahle 2011]

- Let $\omega=n r^{D}$, where D is the ambient dimension

Functional Convergence at dimension k? [Thomas and Owada 2020]

$\mathrm{n}=$ number of nodes
all log terms and constants forgone

Functional Convergence at dimension k?
 [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Functional Convergence at dimension k? [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Functional Convergence at dimension k? [Thomas and Owada 2020]

- Cech: weak convergence in finite-dimensional sense

Gaussian process

Maximally Persistent Cycles

Maximally Persistent Cycles

n points in expectation
k-cycle

Maximally Persistent Cycles

[Bobrowski-Kahle-Skraba 2017]

n points in expectation
k-cycle
$c\left(\frac{\log n}{\log \log n}\right)^{1 / k} \leq \max$ persistence $\leq C\left(\frac{\log n}{\log \log n}\right)^{1 / k}$ a.a.s.

- 4 CPU cores
- 40 minutes for the Betti numbers
- 7.5 hours for bounds
- memory issues for larger graphs

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone
- $\beta_{q}($ new $) \leq \beta_{q}($ old $)+\beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new $)-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}$ (link)
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ In practice???

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

V. What lies ahead

orders of magnitude of Betti numbers

[^0]
unbounded growth of $\beta_{1}\left(X_{T}\right)$
unbounded growth of $\beta_{2}\left(X_{T}\right)$
unbounded growth of $\beta_{3}\left(X_{T}\right)$

[^0]: homotopy connectedness

