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I. A Probabilist’s Apology
Why Random Topology and What we Know
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Random points don’t do that.
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Tea with Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation
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Phase Transition
[Erdos-Renyi 1960]
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Betti Numbers

• b

computation and plotting done by Zomorodian
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⇡1 free ⇡1 hyperbolic
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Fundamental Group
[Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

many components w.h.p.
all log terms and constants forgone
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Geometric Complexes

image credit: Penrose
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Expected Betti numbers at dimension k
[Kahle 2011]

• , the number of points


• , where D is the ambient dimension


•

n

ω = nrD

Eβk(Cech) ∼ ω2k+1n

0 n−1/D

r

n− 1
D (1 − 1

k + 2 )
n = number of nodes 
all log terms and constants forgone

Eβk(Cech) → 0 Eβk(Cech) → ∞

sparsevery sparse
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[Bobrowski-Kahle-Skraba 2017]

n points in expectation


k-cycle


 
a.a.s.

c ( log n
log log n )

1/k

≤ max persistence ≤ C ( log n
log log n )

1/k
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Phase Transition
[Harris 1960, Kesten 1980]
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no infinite cluster a.s.

has an infinite cluster a.s.
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giant component
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Giant Cycles?



Bernoulli Bond Percolation





Phase Transition
[Duncan-Kahle-Schweinhart, 2021]

no giant cycle a.a.s.

all giant cycles a.a.s.
0 11/2
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II. Preferential Attachment
Beyond independence and homogeneity
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Preferential Attachment
[Albert and Barabasi 1999]
P(attaching to v)  degree + a tuning parameter  ∝ δ

rich-get-richer effect
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• triangle counts and clustering coefficient [Bollobas and Ridden 2002, 
Prokhorenkova et al 2013]


• subgraph counts [Garavaglia and Steghuis 2019]


• and more…



Clique Complex
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cε(num of nodes1− 2q x) ≤ β2 ≤ Cε(num of nodes1− 2q x)
q ≥ 2
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Pass to infinity











β2 = 1 β2 = 2 β2 = 3

Will all of these be filled in at infinity?
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Homotopy-Connected

• Almost surely, the infinite preferential attachment complex


• is q-homotopy-connected if 


• has infinite Betti number at dimension q if 

x ≤
1

2(q + 1)
1

2(q + 1)
< x ≤

1
2q

Recall:

 decreases with  

the preferential attachment strength

x ∈ (0,1/2)

P[T attaches to i] ∝ T−x
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• If the preferential attachment effect is strong enough,


•  grows sublinearly with high probability


•  almost surely

βq(XT)

πq(X∞) ≅ 0



V. What lies ahead
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orders of magnitude of 
Betti numbers

parameter estimation?

simplicial preferential 
attachment?

homotopy connectedness

other non-homogeneous 
complexes?



What did we learn today?

• Random topology is cool.


• Preferential attachment graph has interesting topology.


• More interesting things are waiting to be discovered.
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• Cech: weak convergence in finite-dimensional sense

0 n−1/D

r
difference of two time-

changed Brownian motion

n− 1
D (1 − 1

k + 2 )

difference of two time-
changed Poisson processed
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n = number of nodes 
all log terms and constants forgone



• 4 CPU cores


• 40 minutes for the Betti numbers


• 7.5 hours for bounds


• memory issues for larger graphs
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