Topology of Scale-Free Graphs

How Random Interaction Begets Holes

Chunyin Siu Cornell University cs2323@cornell.edu

Topology of Scale-Free Graphs — Homology and **Homotopy** How Random Interaction Begets Holes

Chunyin Siu Cornell University cs2323@cornell.edu

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

topological properties

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- topological properties
- random fluctuation?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- topological properties
- random fluctuation?

—> random topology

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

random topology

random topology

preferential attachment

random topology

preferential attachment

our result

I. A Probabilist's Apology Why Random Topology and What we Know

plots generated by Andrey Yao

Size is Signal

Or is it?

Or is it?

Size is Signal?

Surprise Size is Signal.

Random points don't do that.

Signal is what is not random.

Signal is what is not random. So what is random?

Tea with Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

Phase Transition [Erdos-Renyi 1960]

many components w.h.p.

0

connected w.h.p.

all log terms and constants forgone

p

1

Erdos-Renyi Clique Complex

Betti Numbers

Erdős–Rényi random complex on n=100 vertices

computation and plotting done by Zomorodian

Phase Transition [Erdos-Renyi 1960]

0 many components w.h.p.

connected w.h.p.

 $\frac{1}{n}$

n = number of nodes all log terms and constants forgone

1

Phase Transition [Kahle 2009, 2014]

H_0

0 many components w.h.p.

n = number of nodes all log terms and constants forgone

Phase Transition [Kahle 2009, 2014]

H_0

many components w.h.p. $\left(\right)$

Phase Transition [Kahle 2009, 2014]

 H_0

many components w.h.p.

Fundamental Group [Kahle 2009, Babson 2012, Costa-Farber-Horak 2015]

H_0

0 many components w.h.p.

all log terms and constants forgone

Geometric Complexes

image credit: Penrose

• *n*, the number of points

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

Rips:
$$\sim \omega^{k+1}n$$

Cech: $\sim \omega^{2k+1}n$
sparse

 $O(\omega^k e^{-c\omega}n)$

under convexity assumption

 $\omega = 1$

dense

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

 $O(\omega^k e^{-c\omega}n)$

under convexity assumption

 $\omega = 1$

dense

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

$$E\beta_{k}(\text{Cech}) \to \infty$$

$$-\frac{1}{D}\left(1 - \frac{1}{k+2}\right) \text{ sparse } n^{-1/D}$$

Maximally Persistent Cycles

image credit: Andrey Yao

Maximally Persistent Cycles

n points in expectation

k-cycle

Maximally Persistent Cycles [Bobrowski-Kahle-Skraba 2017]

n points in expectation k-cycle

$c\left(\frac{\log n}{\log\log n}\right)^{1/k} \le \max \text{ persistence} \le C\left(\frac{\log n}{\log\log n}\right)^{1/k}$ a.a.s

Bernoulli Bond Percolation

Bernoulli Bond Percolation

Phase Transition [Harris 1960, Kesten 1980]

0

no infinite cluster a.s.

Phase Transition [Harris 1960, Kesten 1980]

0

giant component no infinite cluster a.s.

Bernoulli Bond Percolation

Phase Transition [Duncan-Kahle-Schweinhart, 2021]

0

no giant cycle a.a.s.

Tea with Random Topology

Erdo-Renyi Complexes

Geometric Complexes

Topological Percolation

II. Preferential Attachment Beyond independence and homogeneity

Independent and identically distributed?

Independent and identically distributed?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

P(attaching to v) \propto degree + δ = 4 + δ

P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ

What do we know?

What do we know?

• degree distribution [Albert and Barabasi 1999]
What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

What do we know?

- degree distribution [Albert and Barabasi 1999]
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Avhan Misra

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

increasing trend

- increasing trend
- concave growth •

- increasing trend
- concave growth
- outlier

- With probability at least 1ε ,
- $c_{\varepsilon}(\text{num of nodes}^{1-4x}) \leq \beta_2 \leq C_{\varepsilon}(\text{num of nodes}^{1-4x})$
 - $x \in (0, 1/2)$ decreases with the preferential attachment strength
 - $P[T \text{ attaches to } i] \propto T^{-x}$

- With probability at least 1ε ,
- $c_{\varepsilon}(\text{num of nodes}^{1-4x}) \leq \beta_2 \leq C_{\varepsilon}(\text{num of nodes}^{1-4x})$
 - $x \in (0, 1/2)$ decreases with the preferential attachment strength

•
$$P[T \text{ attaches to } i] \propto T^{-x}$$

• If $1 - 4x < 0$, then $\beta_2 \le C_{\varepsilon}$.

- With probability at least 1ε ,
- $c_{\varepsilon}(\text{num of nodes}^{1-4x}) \leq \beta_2 \leq C_{\varepsilon}(\text{num of nodes}^{1-4x})$
 - $x \in (0, 1/2)$ decreases with the preferential attachment strength
 - $P[T \text{ attaches to } i] \propto T^{-x}$
 - If 1-4x < 0, then $\beta_2 \leq C_{\varepsilon}$.
- $c_{\varepsilon}(\text{num of nodes}^{1-2qx}) \leq \beta_q \leq C_{\varepsilon}(\text{num of nodes}^{1-2qx})$ for $q \geq 2$.

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$ increasing preferential attachment

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment

2/3

unbounded growth of $\beta_1(X_T)$

unbounded growth of $\beta_2(X_T)$

unbounded growth of $\beta_3(X_T)$

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

2/3

unbounded growth of $\beta_1(X_T)$

unbounded growth of $\beta_2(X_T)$

unbounded growth of $\beta_3(X_T)$

unbounded growth of $\beta_4(X_T)$

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

unbounded growth of $\beta_1(X_T)$

unbounded growth of $\beta_2(X_T)$

unbounded growth of $\beta_3(X_T)$

unbounded growth of $\beta_4(X_T)$

Theorem: $\beta_2 \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $\beta_2 \approx$ **num of nodes** $^{1-4x}$

Proof of $\beta_2 \approx \text{num of nodes}^{1-4x}$

Proof of $\beta_2 \approx \text{num of nodes}^{1-4x}$

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Homotopy-Connectivity?

Homotopy-Connectivity? $\beta_2 \approx \text{num of nodes}^{1-4x}$

Pass to infinity

]

Will all of these be filled in at infinity?

[Barmak 2023]

- A clique complex is q-homotopy-connected
- if every collection of 2(q + 1) nodes has a common neighbor.

[Barmak 2023]

- A clique complex is q-homotopy-connected
- if every collection of 2(q + 1) nodes has a common neighbor.

Homotopy-Connected

- Almost surely, the infinite preferential attachment complex
- is *q*-homotopy-connected if $x \leq \frac{1}{2(q+1)}$

Recall: $x \in (0, 1/2)$ decreases with the preferential attachment strength $P[T \text{ attaches to } i] \propto T^{-x}$

Homotopy-Connected

- Almost surely, the infinite preferential attachment complex
- is *q*-homotopy-connected if $x \leq \frac{1}{2(q+1)}$

has infinite Betti number at dimension *q* if $\frac{1}{2(q+1)} < x \leq \frac{1}{2a}$

Recall: $x \in (0, 1/2)$ decreases with the preferential attachment strength $P[T \text{ attaches to } i] \propto T^{-x}$

Phase Transition

Phase transition

unbounded growth of $\beta_1(X_T)$

unbounded growth of $\beta_2(X_T)$

unbounded growth of $\beta_3(X_T)$

unbounded growth of $\beta_4(X_T)$

- If the preferential attachment effect is strong enough,
- $\beta_q(X_T)$ grows sublinearly with high probability
- $\pi_q(X_\infty) \cong 0$ almost surely

V. What lies ahead

orders of magnitude of Betti numbers

homotopy connectedness

orders of magnitude of Betti numbers

homotopy connectedness

parameter estimation?

simplicial preferential attachment?

other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> **Cornell University**

arxiv paper

my video about small holes

Thank you!Chunyin Siucs2323@cornell.eduCornell University

arxiv paper

my video about small holes

Erdos-Renyi clique complexes

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2023
 - etc

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2013
 - etc

random geometric complexes

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2013
 - etc

- random geometric complexes
 - Kahle 2011
 - Kahle and Meckes 2013
 - Yogeshwaran and Adler 2015
 - Bobrowski et al 2017
 - Hiraoka et al 2018
 - Thomas and Owada 2021a, b
 - Owada and Wei 2022
 - etc

0

n = number of nodes all log terms and constants forgone

Cech: weak convergence in finite-dimensional sense

all log terms and constants forgone

Cech: weak convergence in finite-dimensional sense

 $\left(\right)$

difference of two timechanged Poisson processed

n = number of nodesall log terms and constants forgone

Cech: weak convergence in finite-dimensional sense

 $\left(\right)$

difference of two timechanged Poisson processed

n = number of nodes all log terms and constants forgone

- 4 CPU cores
- 40 minutes for the Betti numbers
- 7.5 hours for bounds
- memory issues for larger graphs

Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone
 - $\beta_q(\text{new}) \le \beta_q(\text{old}) + \beta_{q-1}(\text{link})$

• Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

- Need homological algebra to relate Betti numbers with lacksquarecounts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra •

- Need homological algebra to relate Betti numbers with ulletcounts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

 $-\beta_q(\text{old}) \le \beta_{q-1}(\text{link})$

- Need homological algebra to relate Betti numbers with counts
 - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

- Need homological algebra to relate Betti numbers with counts
 - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

 Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

4

increasing preferential attachment

 $-\delta/m$