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l. Topological Data Analysis



Two Approaches
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diagram credit: Andrey Yao



Zeolite crystals
[Krishnapriyan et al, 2020}
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Zeolite crystals
[Krishnapriyan et al, 2020]




Networks and Complexes



Networks and Complexes

e Co-occurence complex in Math research paper [Salikov et al, 2018]
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Benchmark of Comparison?



ll. Stochastic Topology

Mug doesn’t play dice?




Tapas of Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation
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Phase Transition
[Erdos-Renyi 1960}

many components w.h.p. connected w.h.p.
- O O @ @ O OO0
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Betti Numbers
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Phase Transition
[Erdos-Renyi 1960}
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Phase Transition

[Kahle 2009, 2014]
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Phase Transition

[Kahle 2009, 2014]
Holes get filled.
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Phase Transition

[Kahle 2009, 2014]
Holes can’t form.  Holes get filled.
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Erdos-Renyi Clique Complex




Geometric Complexes

image credit: Penrose
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Expected Betti numbers at dimension k
[Kahle 2011]

e n, the number of points

c W = nrD, where D Is the ambient dimension
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n = number of nodes
all log terms and constants forgone



Expected Betti numbers at dimension k
[Kahle 2011]

e n, the number of points

c W = nrD, where D Is the ambient dimension

» I, (Cech) ~ 0w n

Ep(Cech) = 0 Ep,(Cech) = o

very sparse | 1 SParse —1/D
0 _3(1 k+2) n

n = number of nodes
all log terms and constants forgone



Maximally Persistent Cycles
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Maximally Persistent Cycles

n points in expectation

k-cycle



Maximally Persistent Cycles
[Bobrowski-Kahle-Skraba 2017]

n points in expectation

k-cycle

1/k 1/k

logn | logn

c| ——— < max persistence < C —)
(log logn) (log logn

d.d.S.



Geometric Complexes

image credit: Penrose



Bernoulli Bond Percolation
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Bernoulli Bond Percolation




Phase Transition
[Harris 1960, Kesten 1980]

no Iinfinite cluster a.s.
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Phase Transition
[Harris 1960, Kesten 1980]

giant component
no rfirte-cluster a.s.
T 1>
0 1/2 1

has an trfinite-cluster a.s.
giant component



Giant Cycles?



Bernoulli Bond Percolation







Phase Transition
[Duncan-Kahle-Schweinhart, 2021]

no giant cycle a.a.s.

B —

0 1/2 1
all giant cycles a.a.s.



Tapas at Random Topology

Erdo-Renyi Complexes Geometric Complexes Topological Percolation



lll. Preferential Attachment

A Non-Homogeneous Model



Preferential Attachment

[Albert and Barabasi 1999]
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Preferential Attachment
[Albert and Barabasi 1999]
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P(attaching to v) x degree + 0 =4 + 0 S 3 7 > k
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Preferential Attachment
[Albert and Barabasi 1999]




Preferential Attachment
[Albert and Barabasi 1999]
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Preferential Attachment
[Albert and Barabasi 1999]

P(attaching to v) & degree + a tuning parameter o ﬁ

ﬁ e

rich-get-richer effect

i
A
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What do we know?

* triangle counts and clustering coefficient [Bollobas and Ridden 2002,
Prokhorenkova et al 2013]

* subgraph counts [Garavaglia and Steghuis 2019]

e and more...



Clique Complex

aka Flag Complex




Cliqgue Complex = Mapping Cone
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+ c(num of nodes' =) < E[f,] < C(num of nodes' ~*)

under mild assumptions

e x € (0,1/2) depends on
the preferential attachment strength

. If 1 — 4x < 0, then E[$,] < C.
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Proof of E£[f5,]

num of nodes!

—4x
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* Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large
class of subgraphs



Theorem: E[),] ~ num of nodes! =*

In practice???
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V. What lies ahead


















What did we learn today?

 Random topology is cool.
* Preferential attachment graph has interesting topology.

 More interesting things are waiting to be discovered.
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