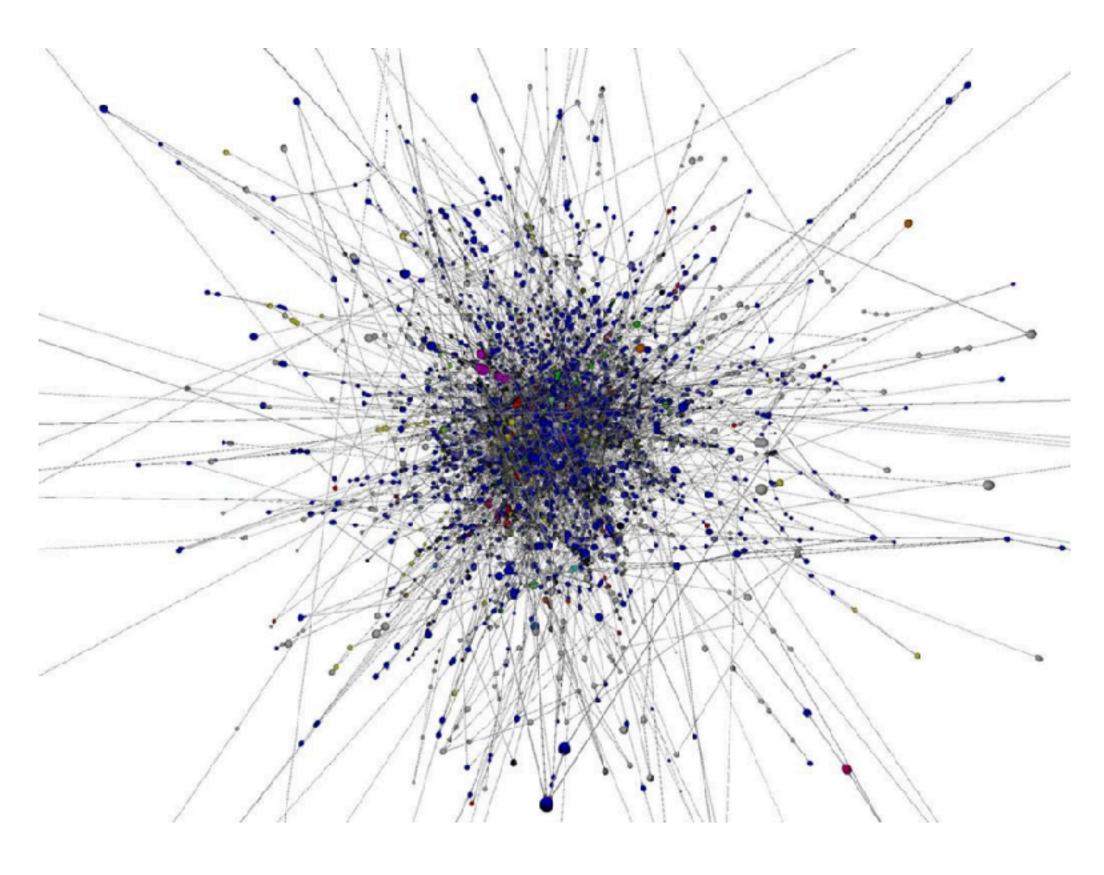
The Topology of Preferential Attachment

The Asymptotics of the Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
Cornell University
cs2323@cornell.edu

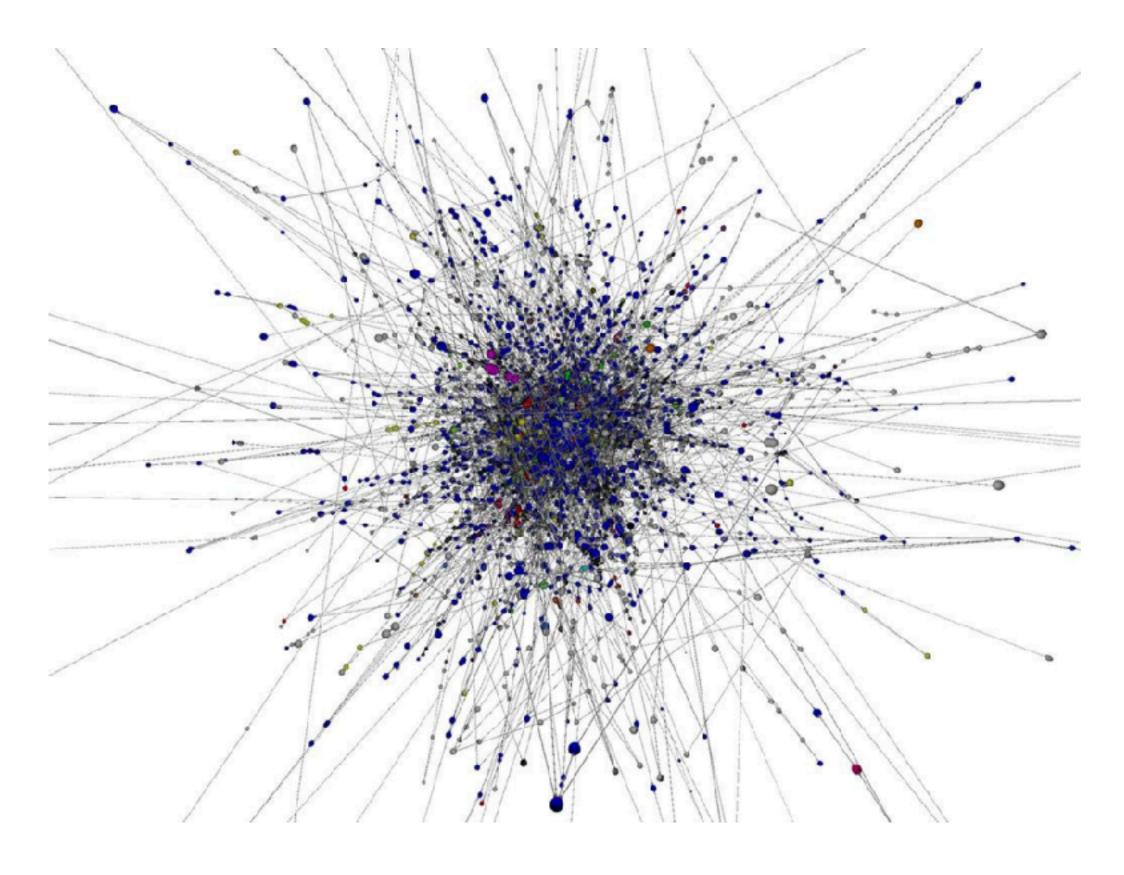
So, preferential attachment...



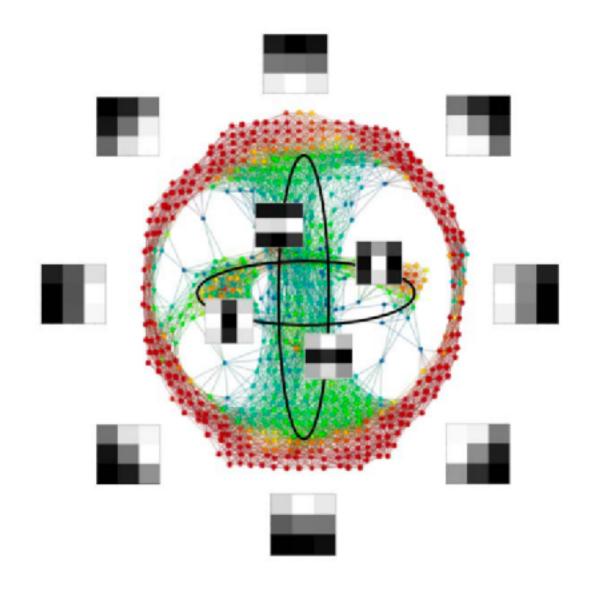
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

Just a bouquet of circles?



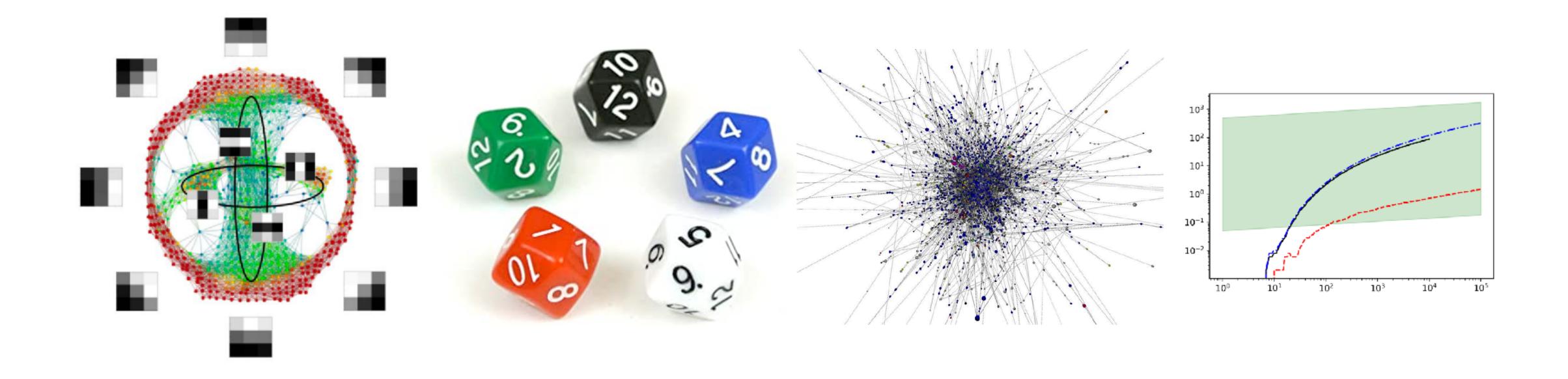
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)



topological data analysis

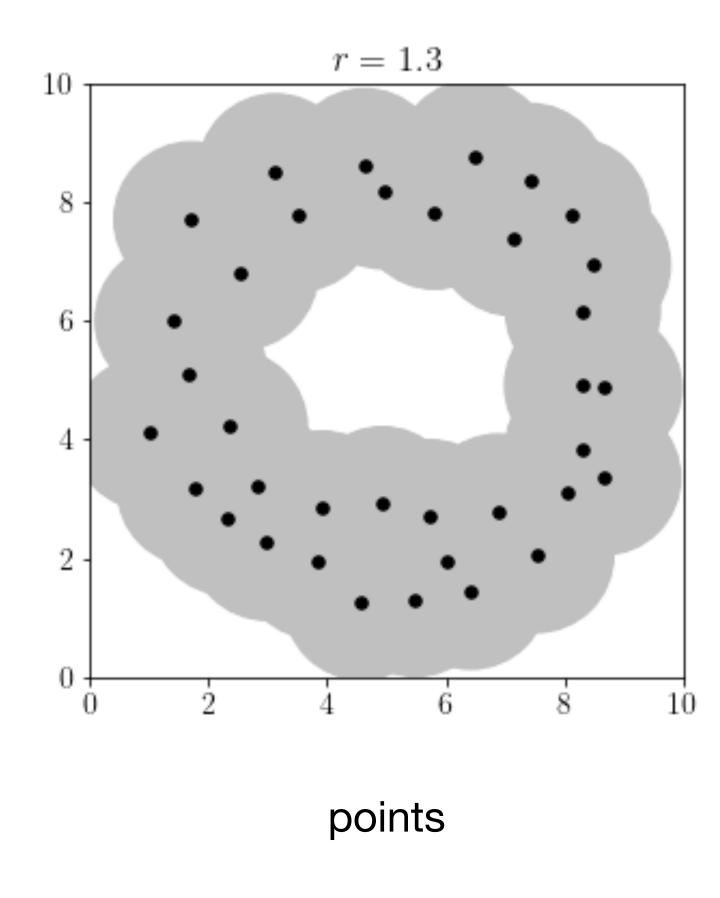
topological data analysis

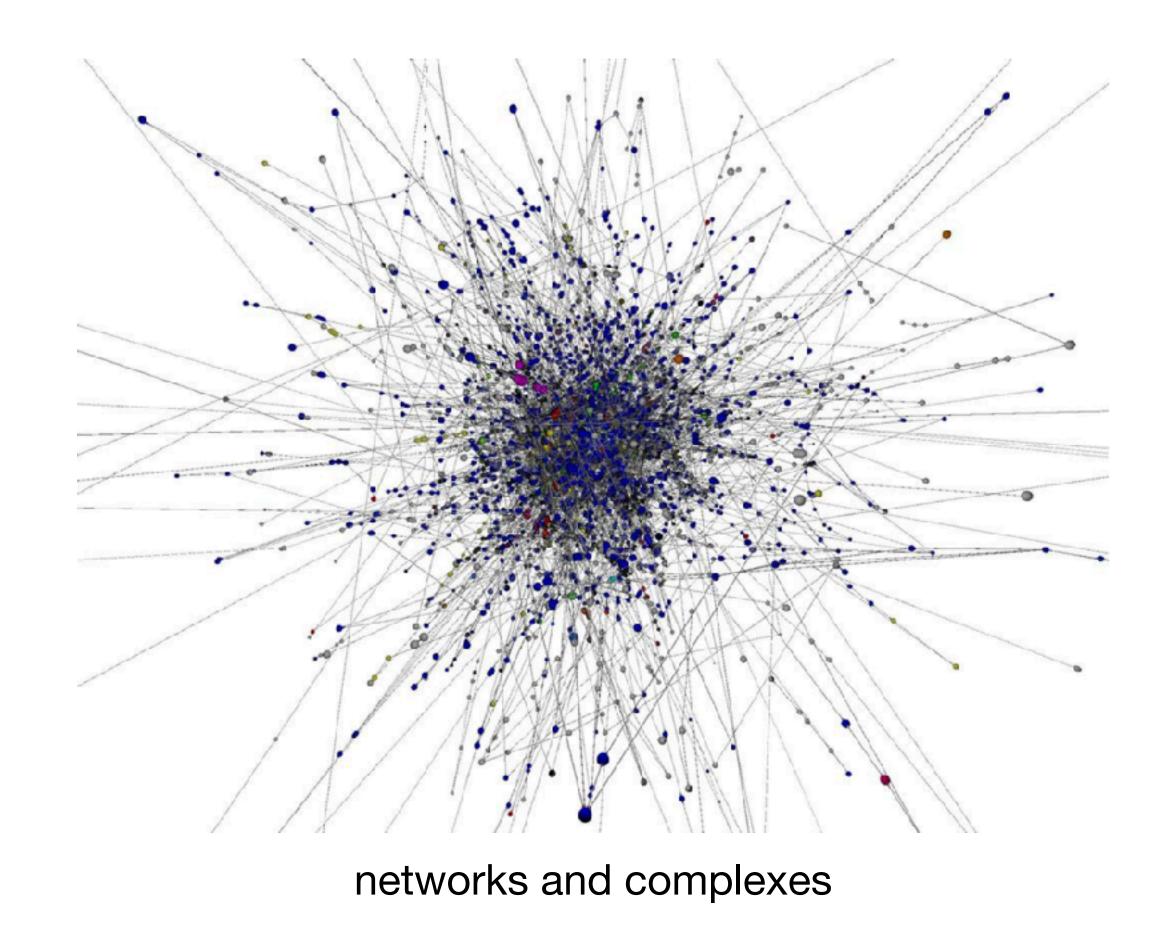
stochastic topology



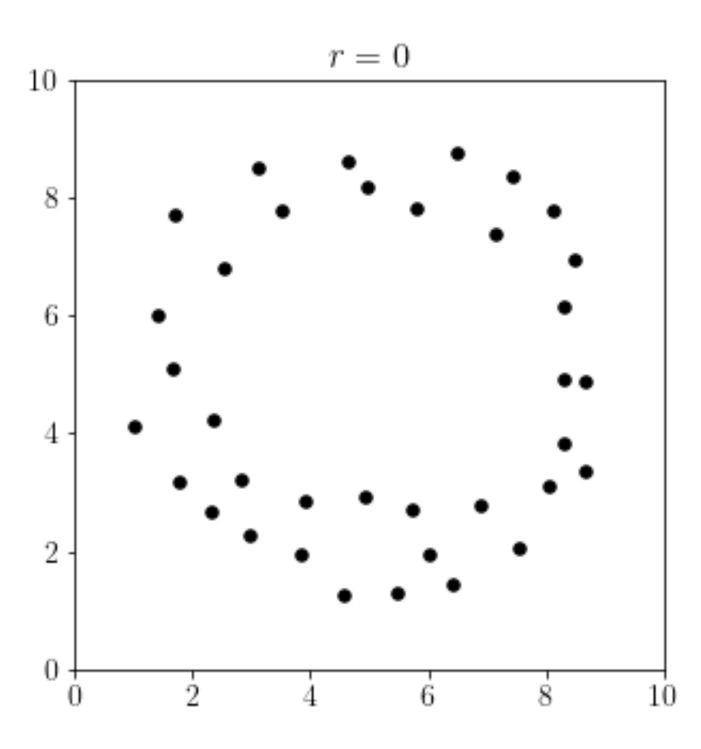
I. Topological Data Analysis

Two Approaches

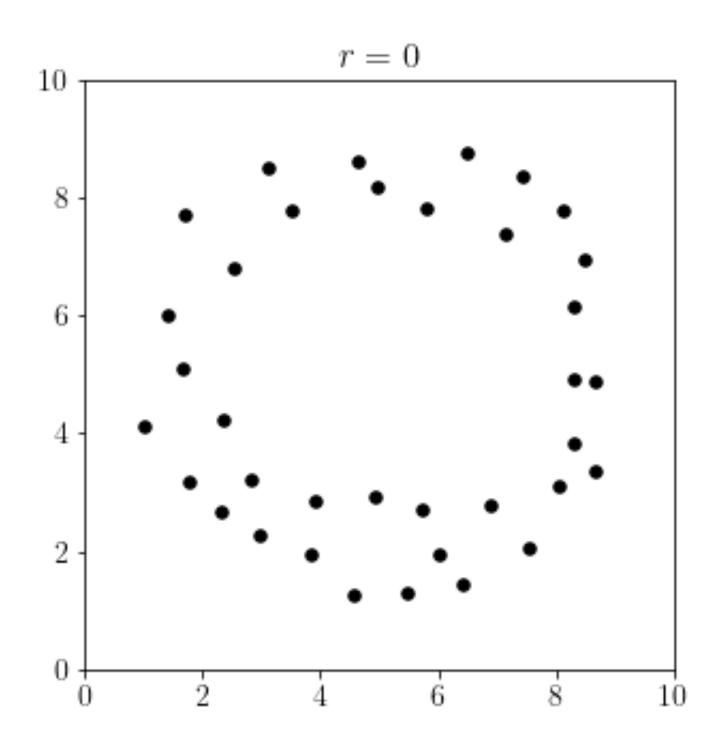


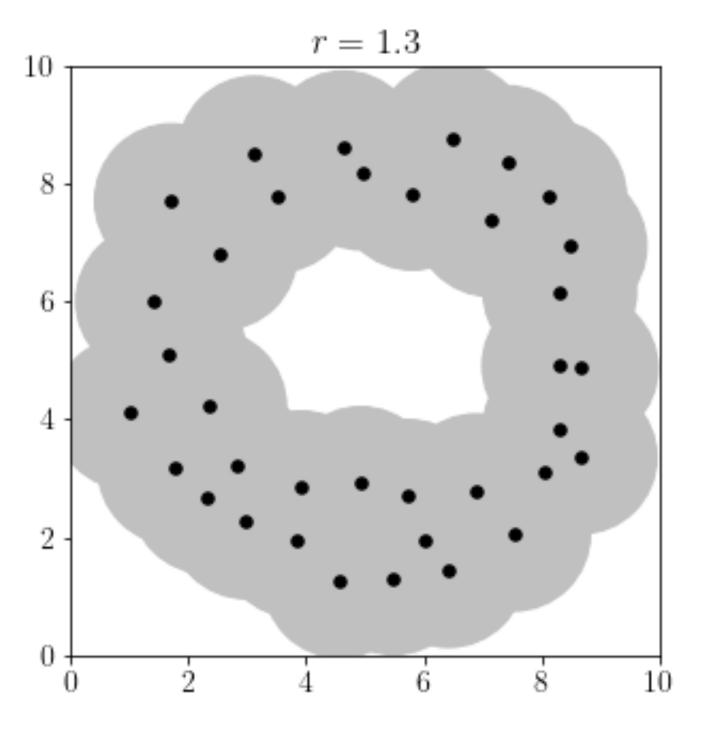


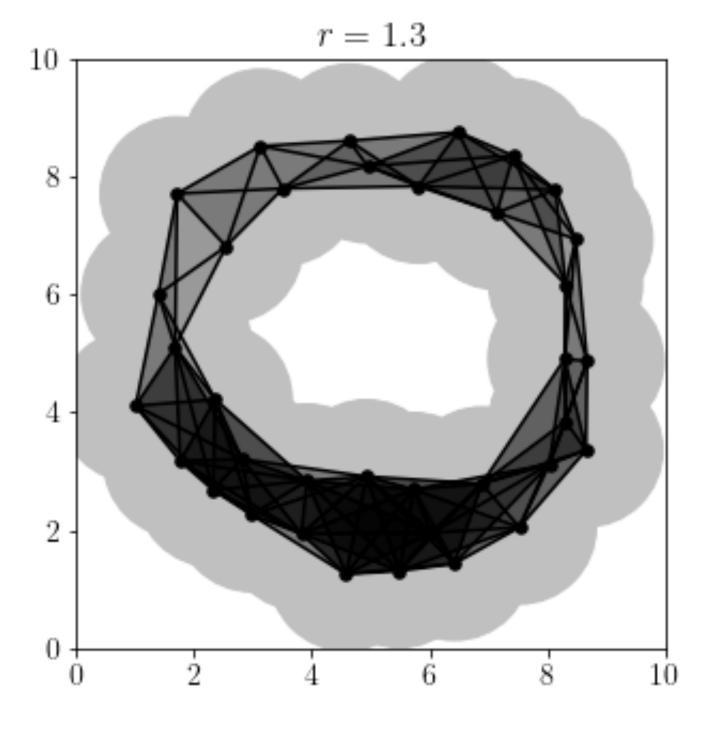
Points



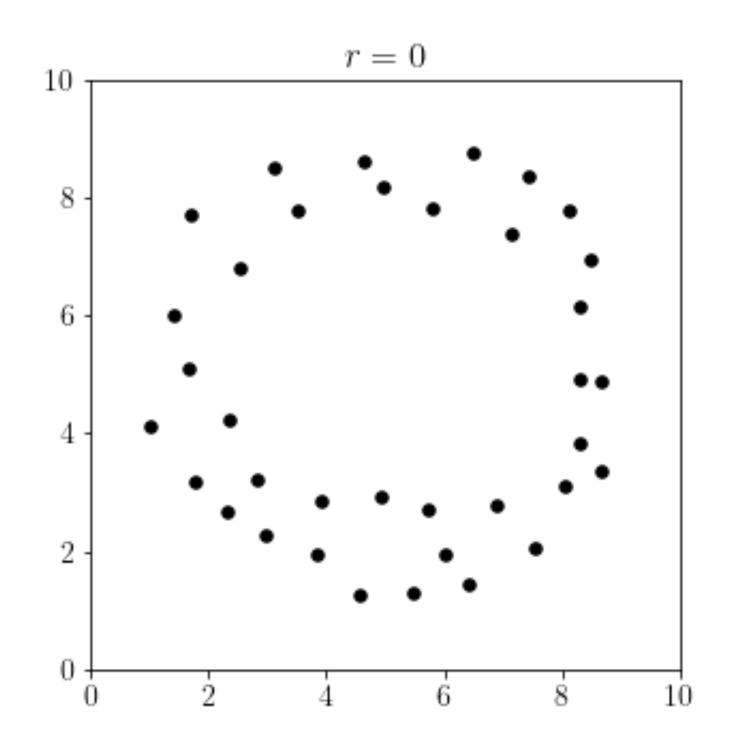
Points

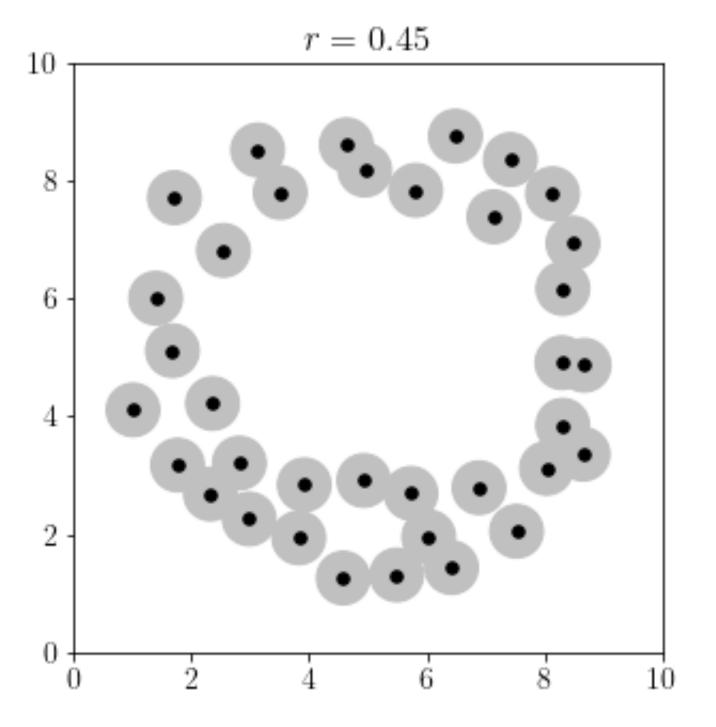


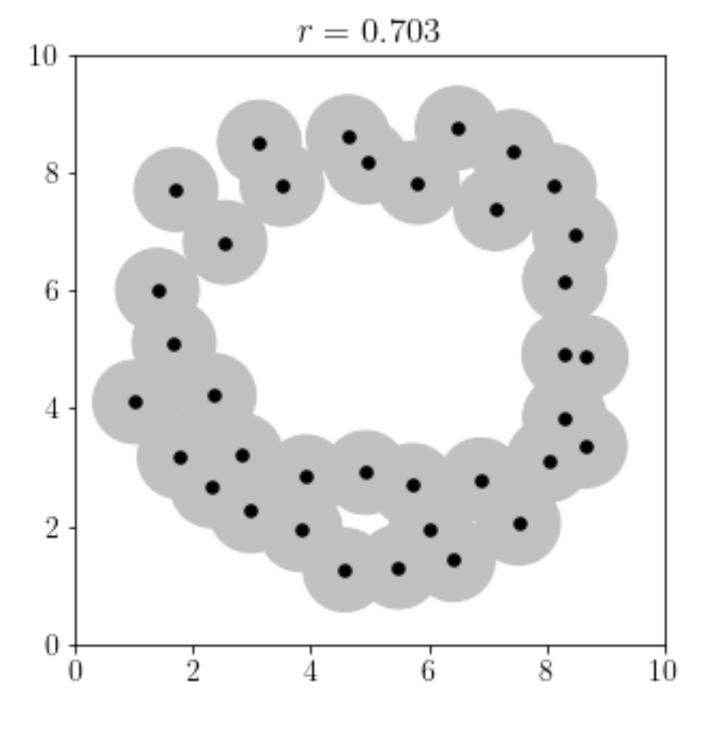




Points







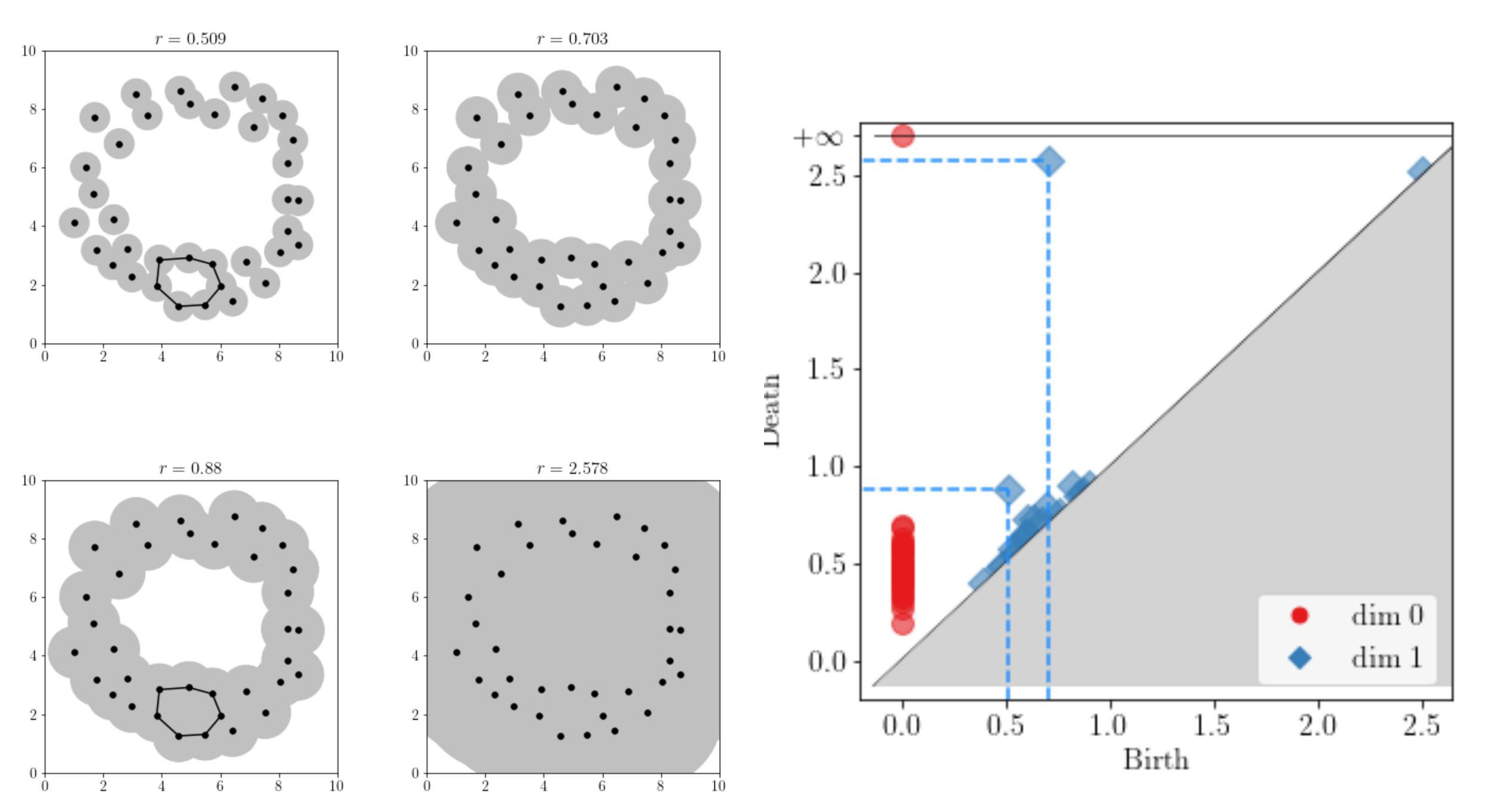
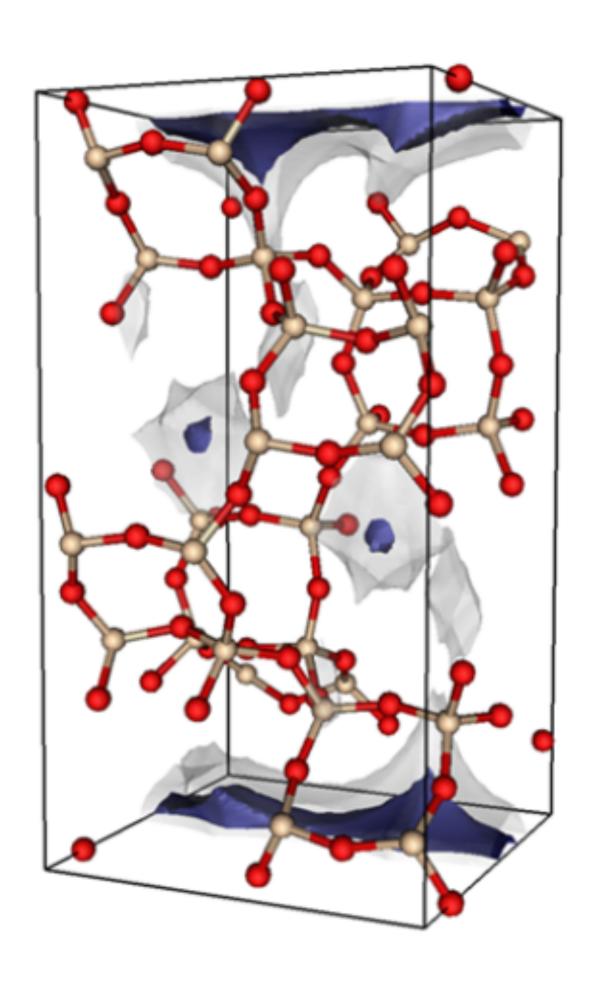


diagram credit: Andrey Yao

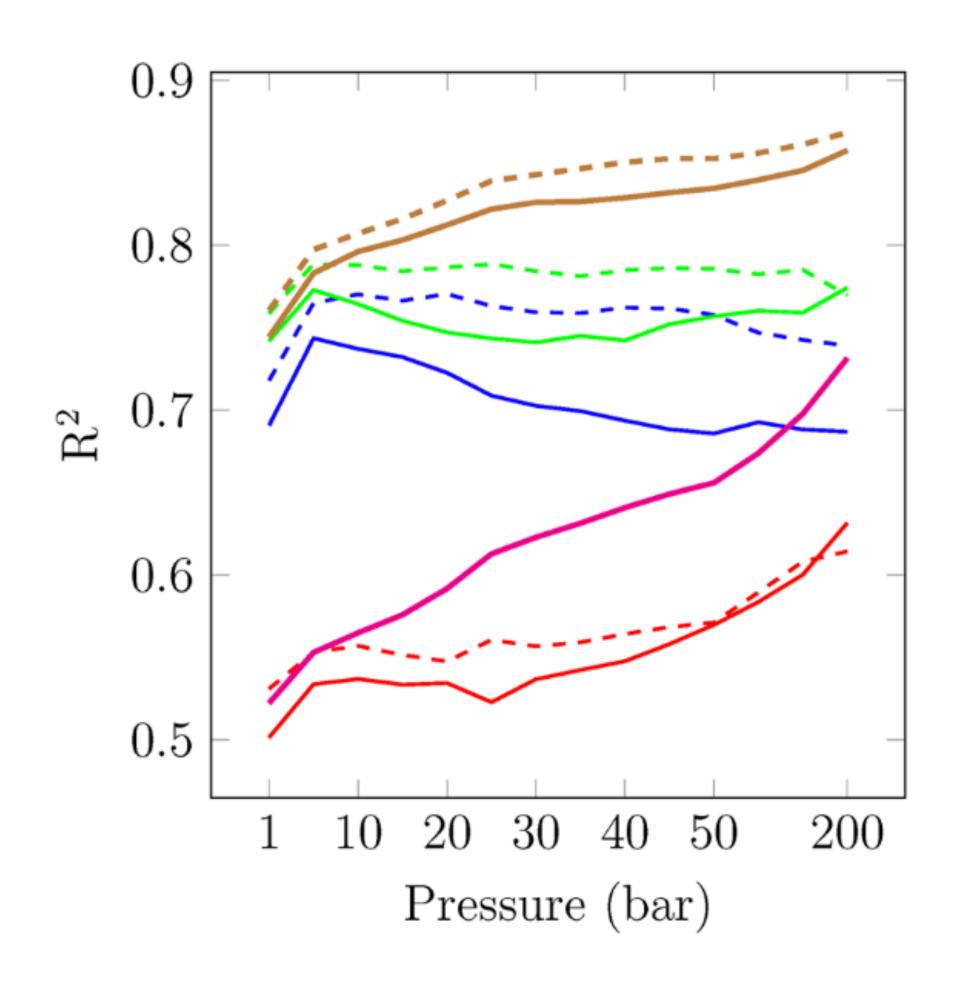
Zeolite crystals

[Krishnapriyan et al, 2020]



Zeolite crystals

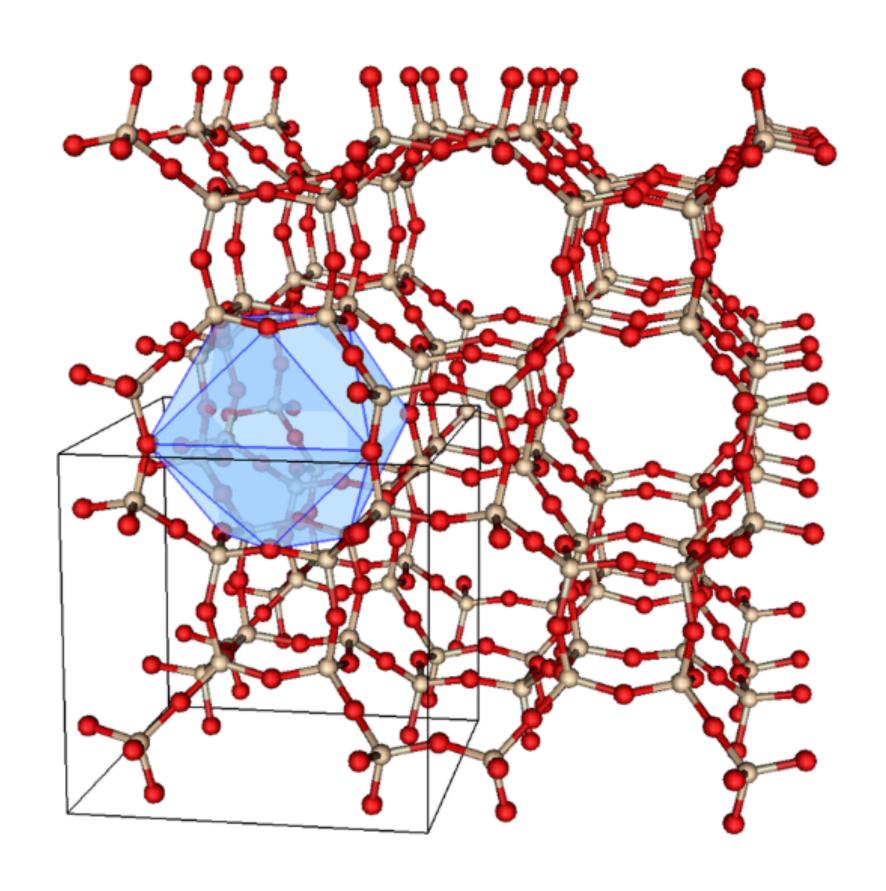
[Krishnapriyan et al, 2020]



- 1D topology, linear weighting
- --- 1D topology, no weighting
- 2D topology, linear weighting
- --- 2D topology, no weighting
- Total topology, linear weighting
- --- Total topology, no weighting
- Combined, linear weighting
- --- Combined, no weighting
- Baseline

Zeolite crystals

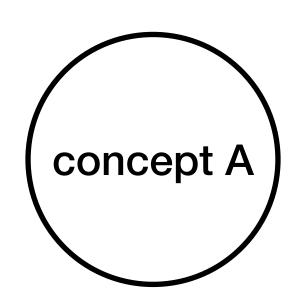
[Krishnapriyan et al, 2020]

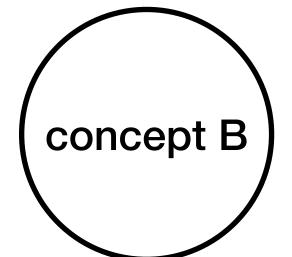


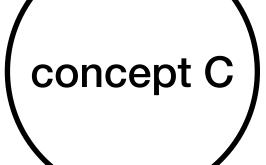
Networks and Complexes

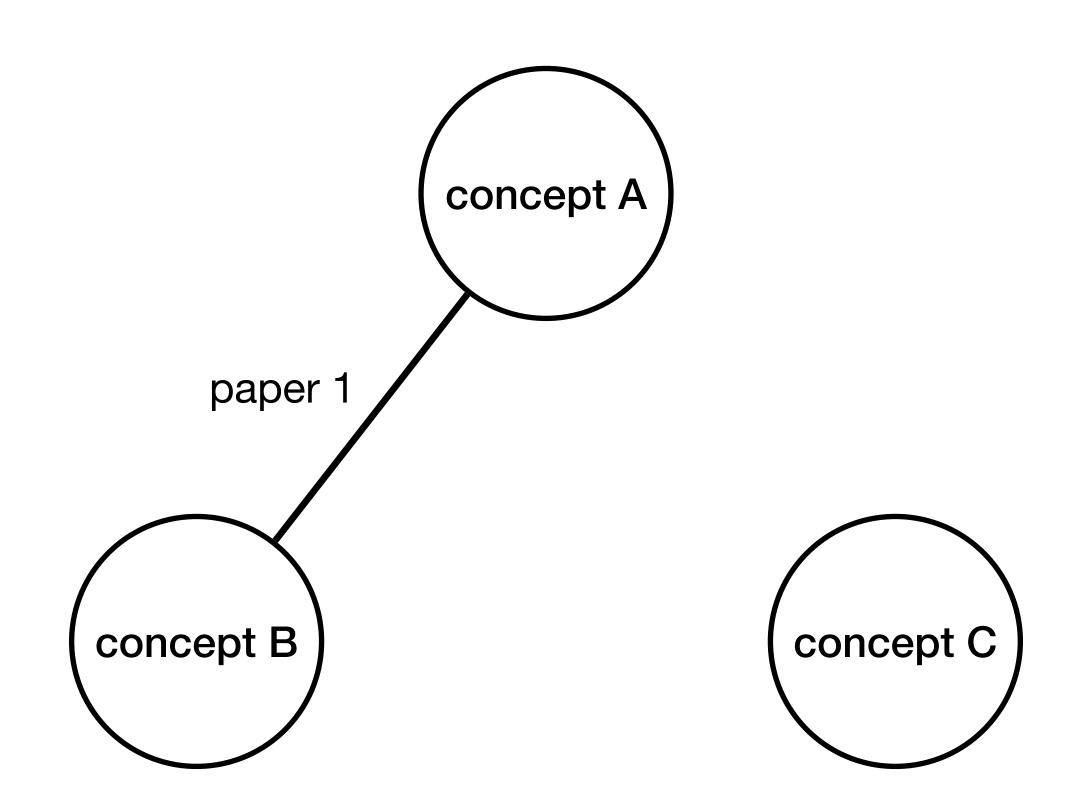
Networks and Complexes

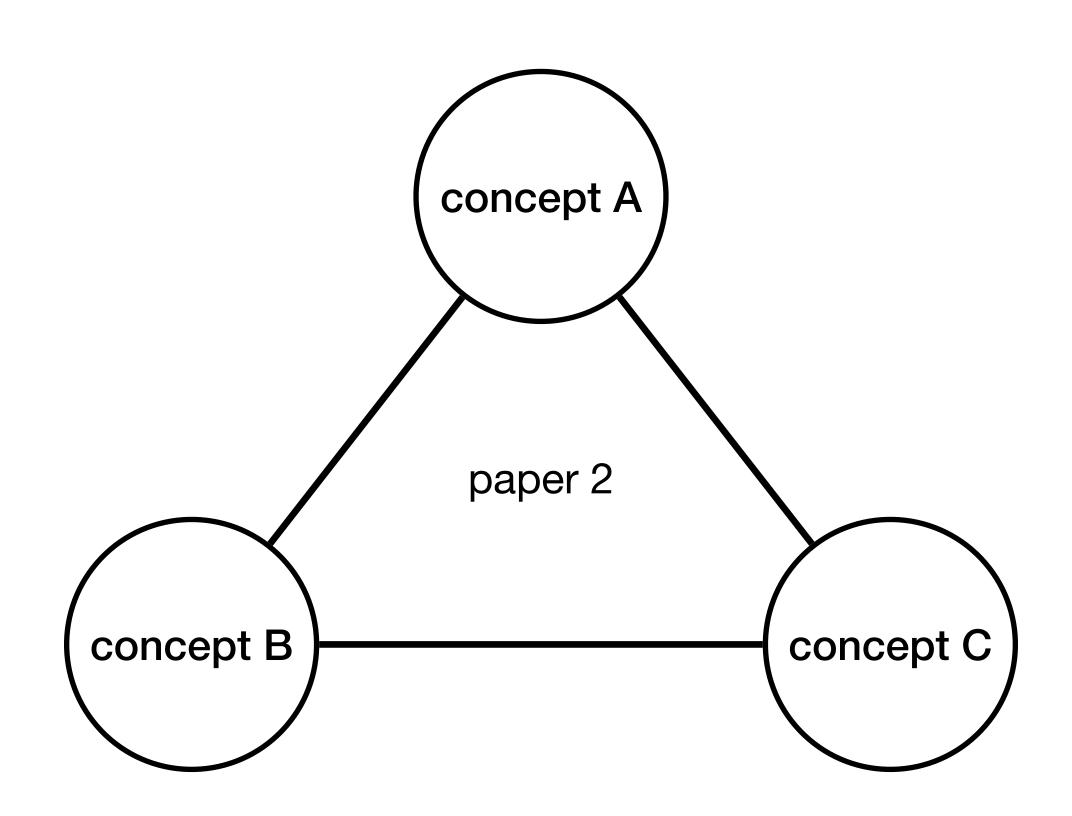
• Co-occurence complex in Math research paper [Salikov et al, 2018]



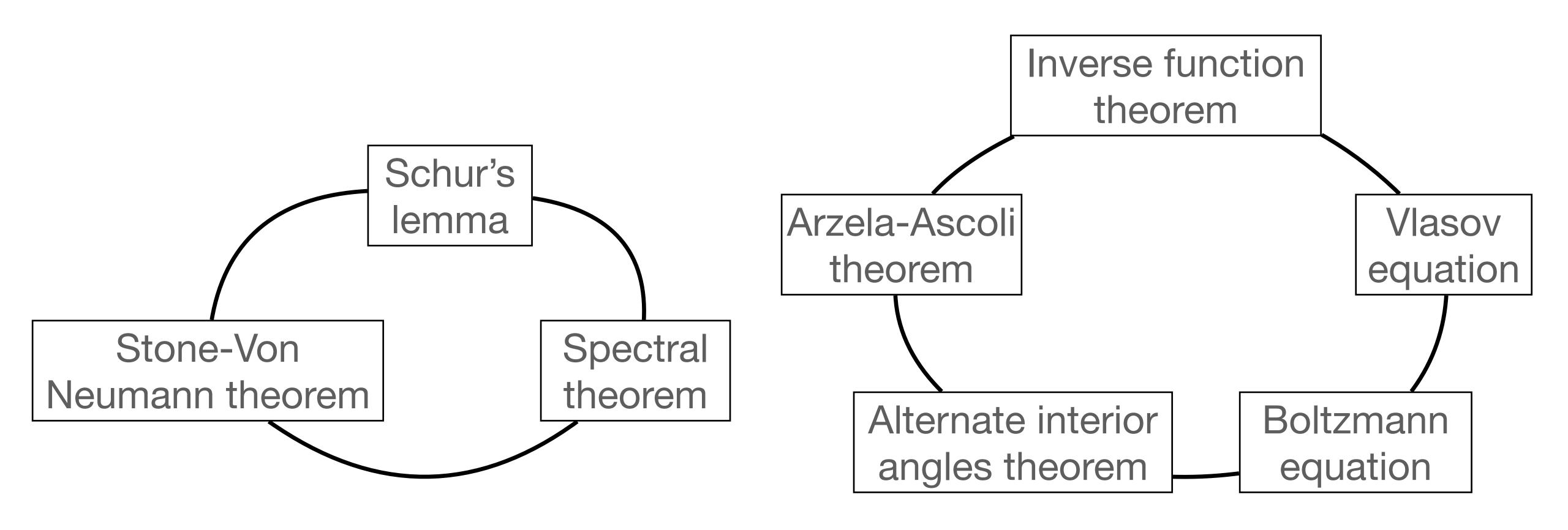








Gap in Understanding

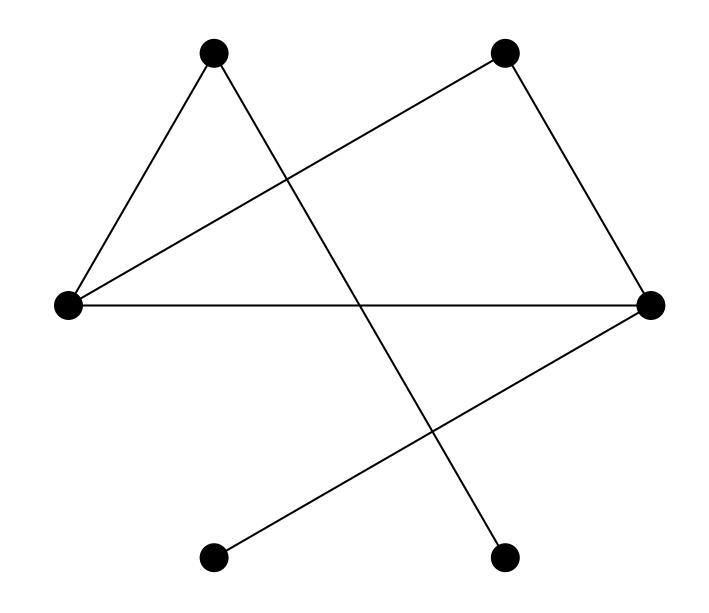


Benchmark of Comparison?

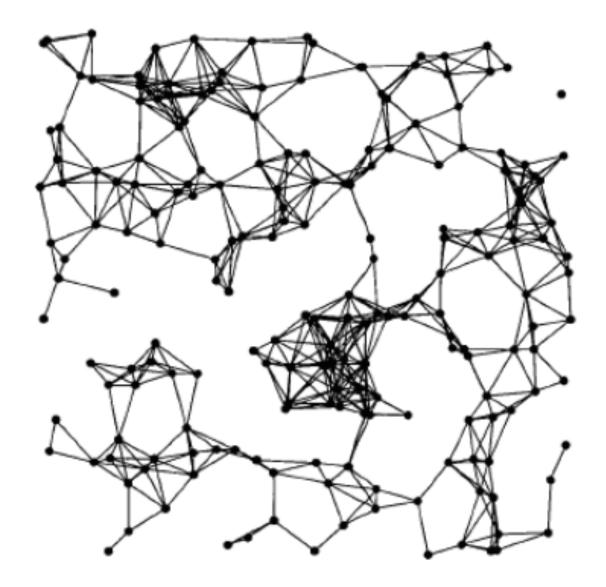
II. Stochastic Topology

Mug doesn't play dice?

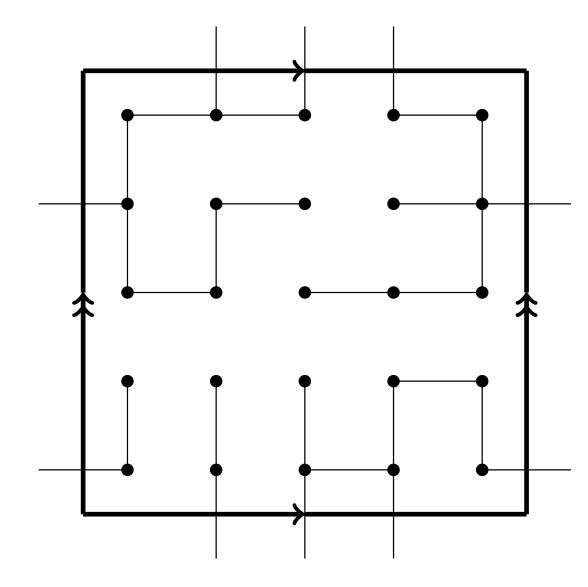
Tapas of Random Topology



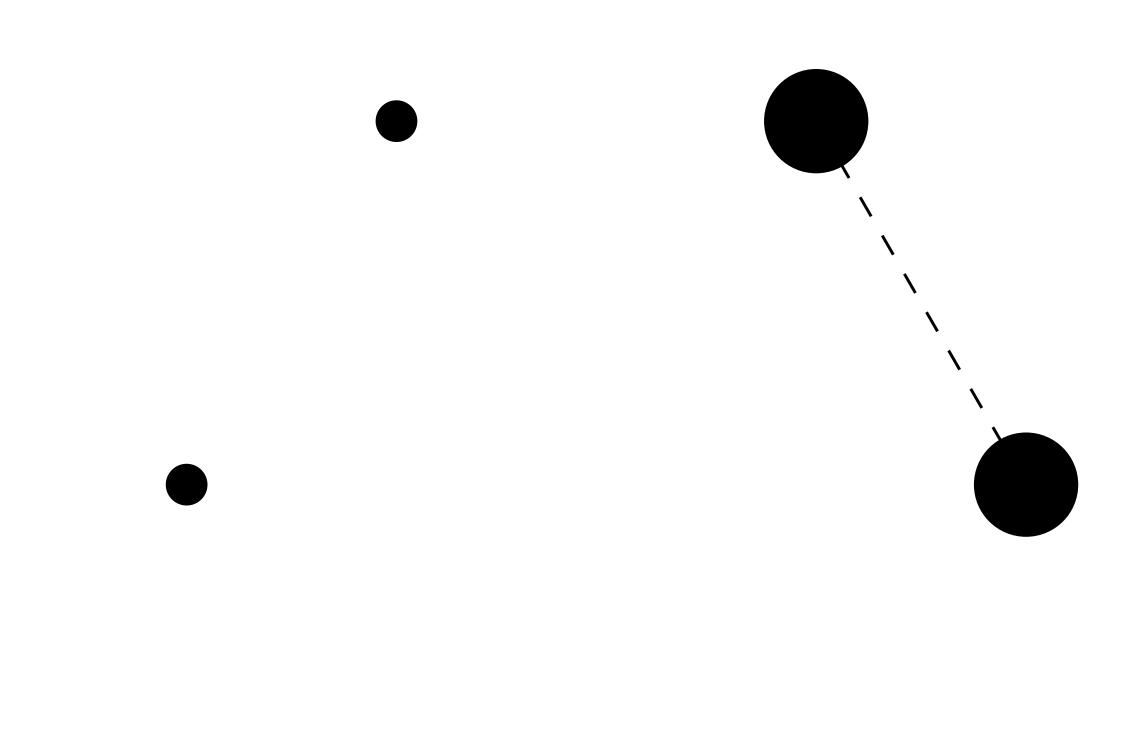
Erdo-Renyi Complexes

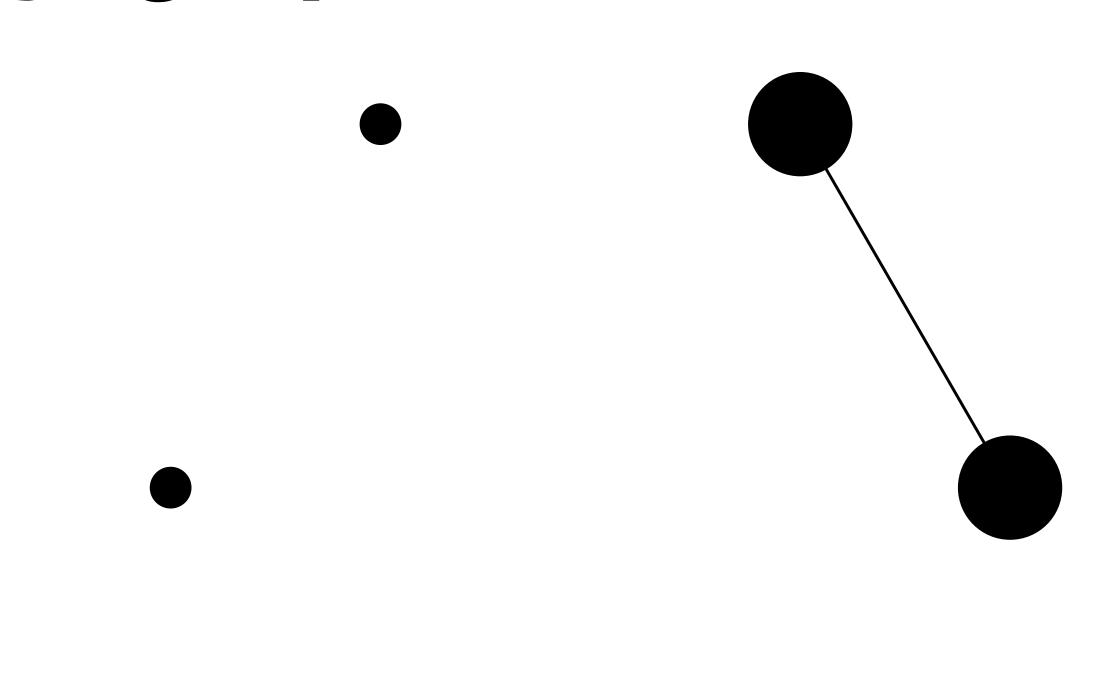


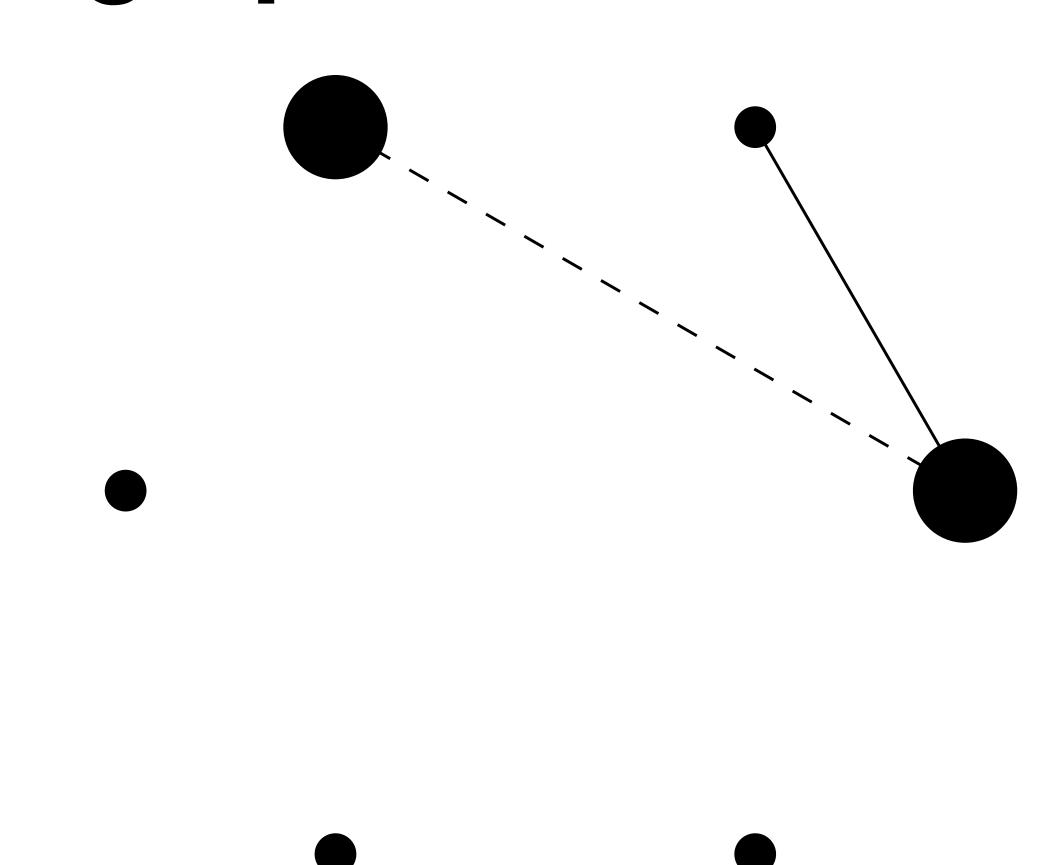
Geometric Complexes

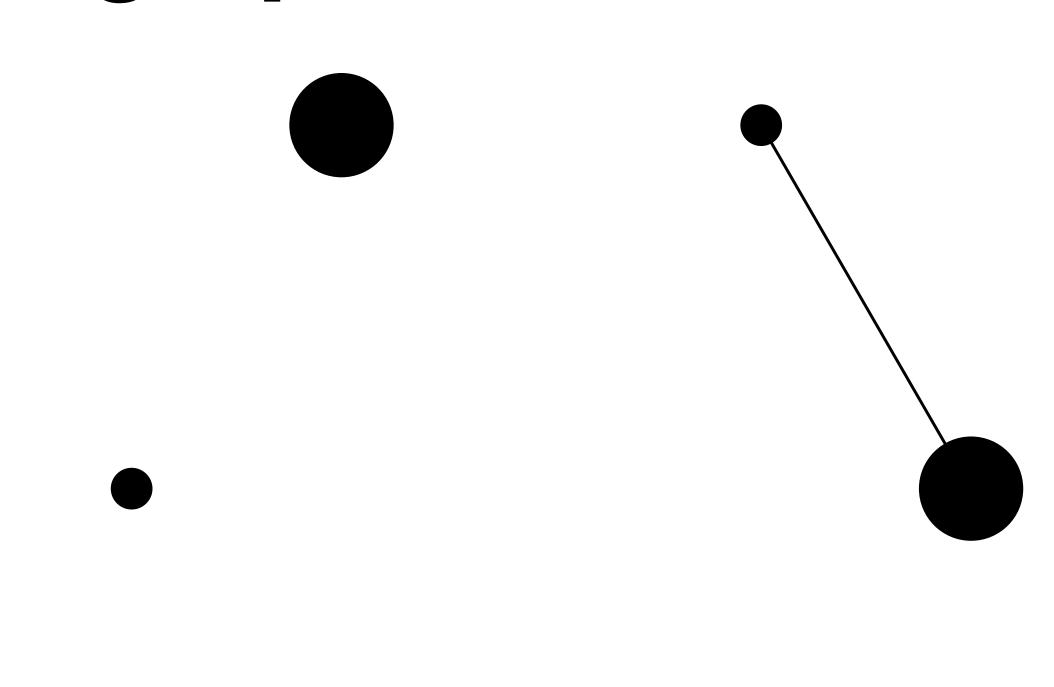


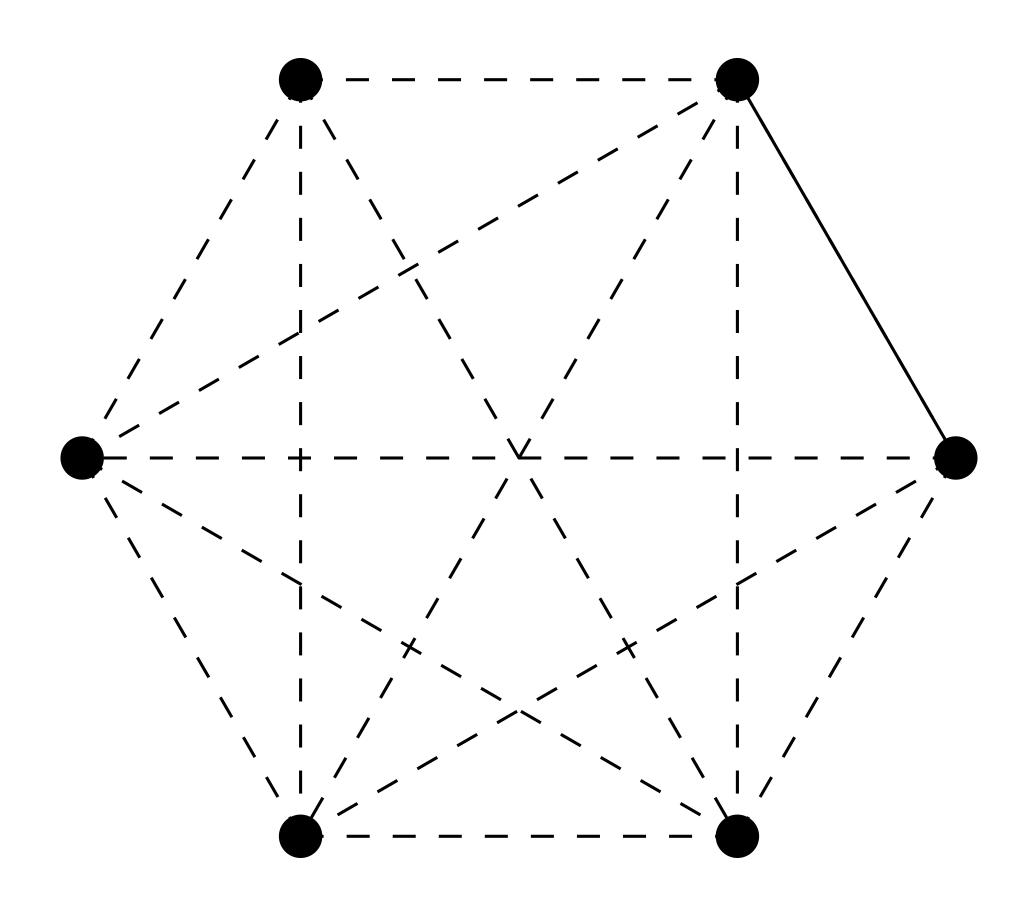
Topological Percolation

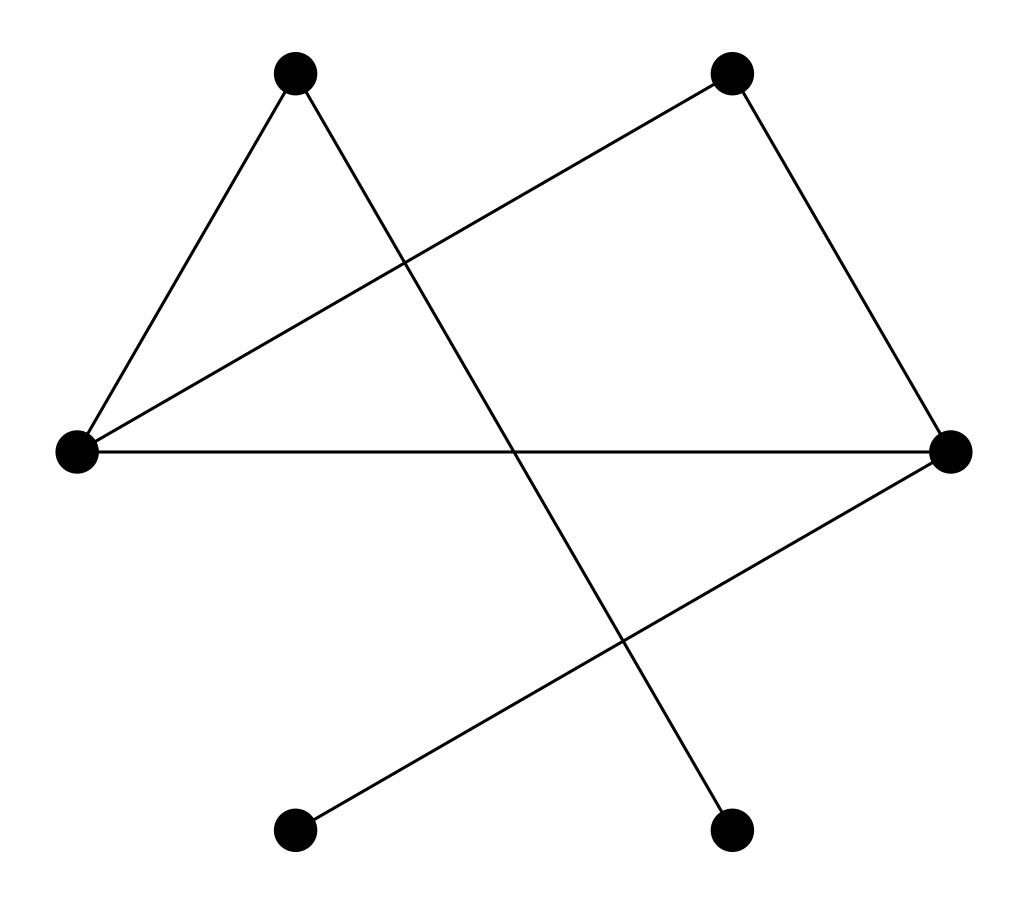


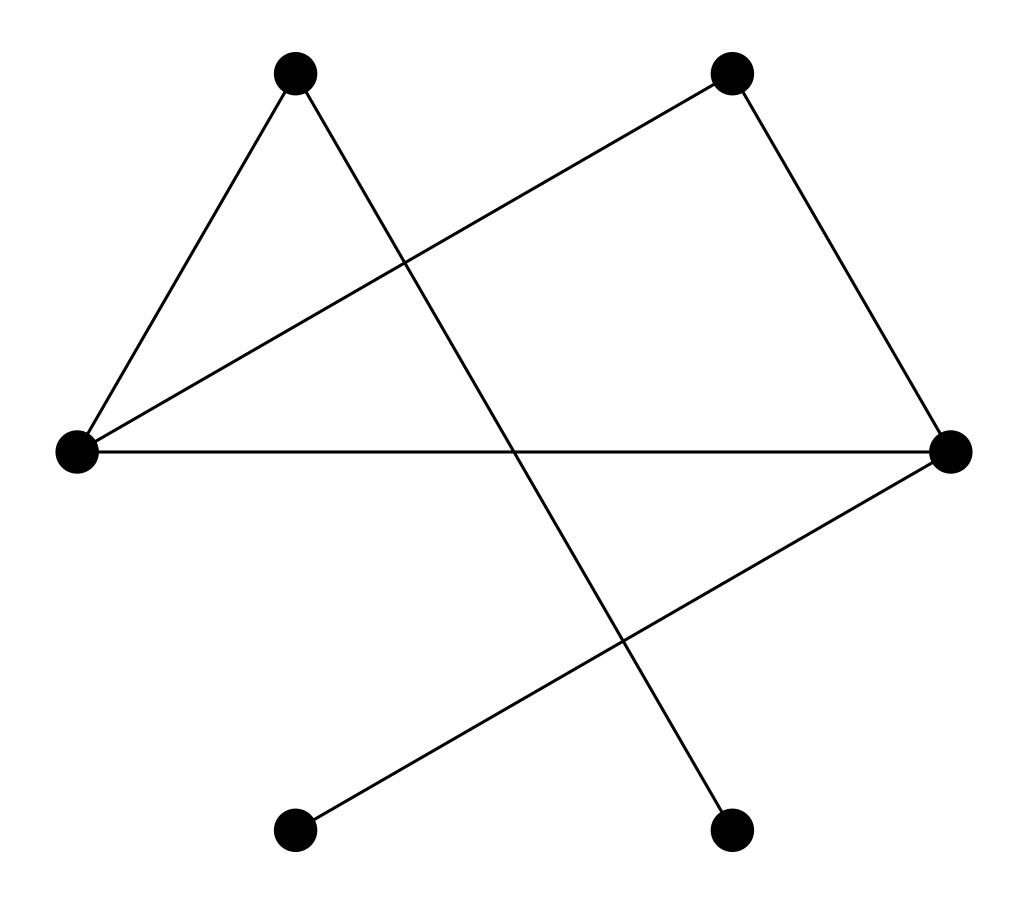






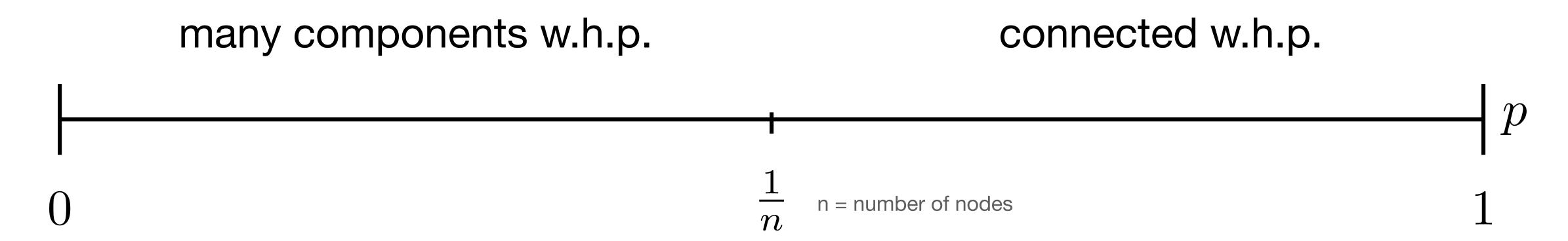






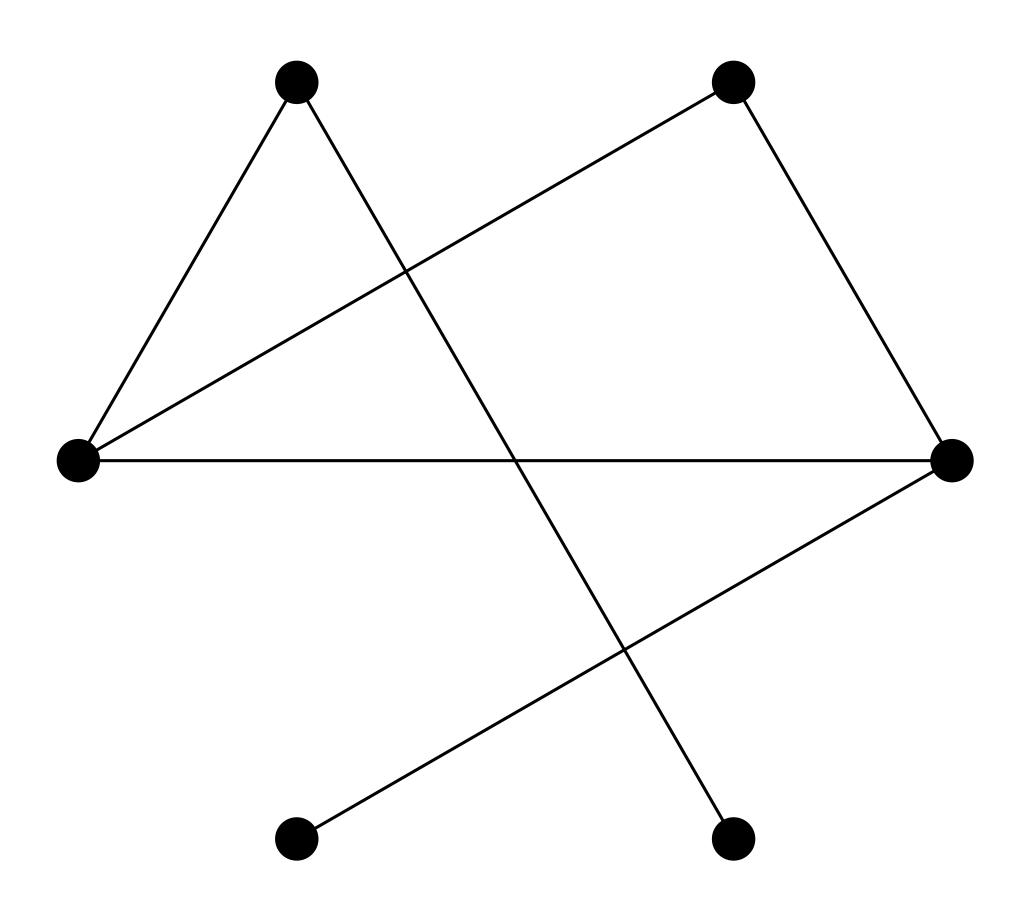
Phase Transition

[Erdos-Renyi 1960]

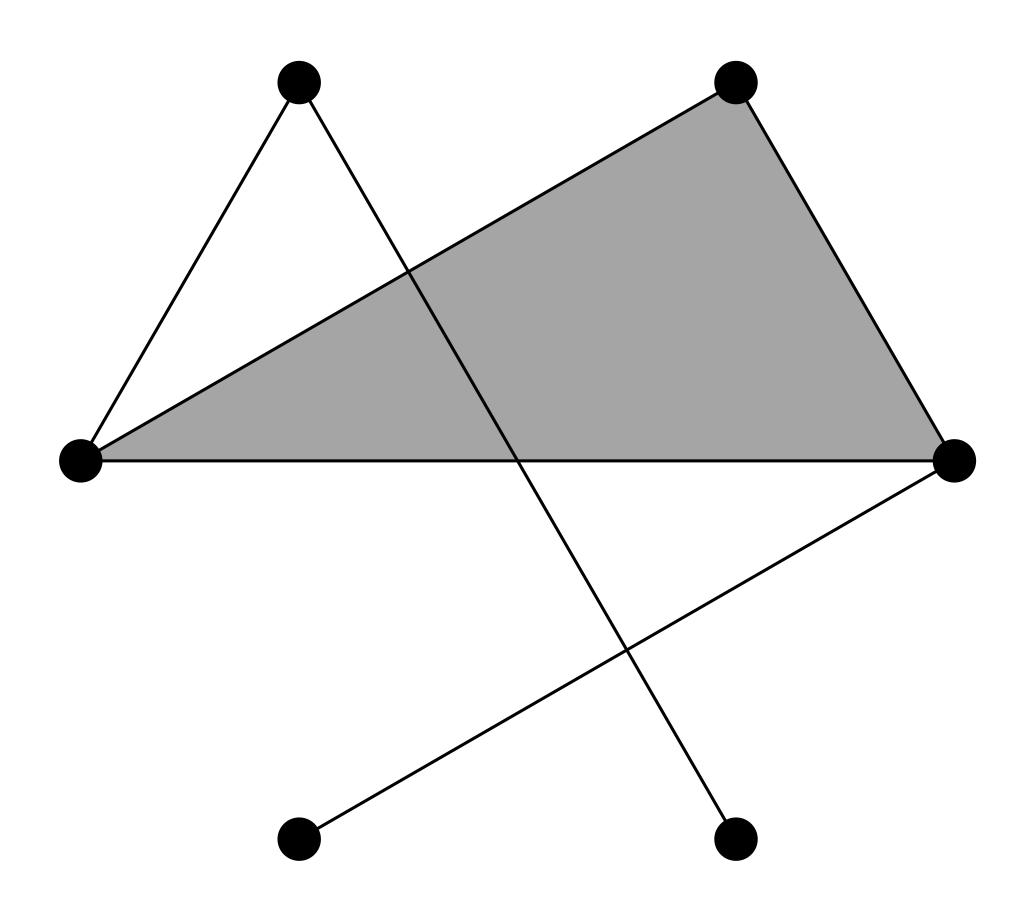


all log terms and constants forgone

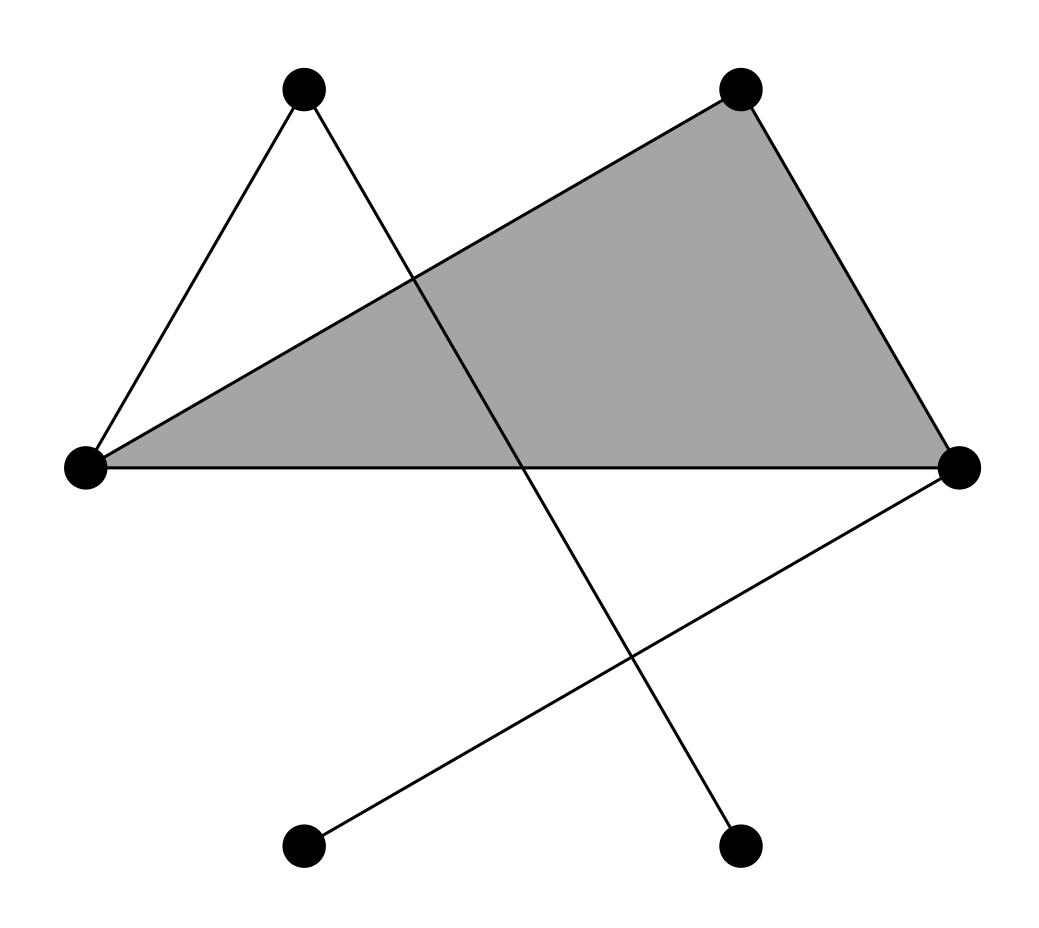
Erdos-Renyi Clique Complex



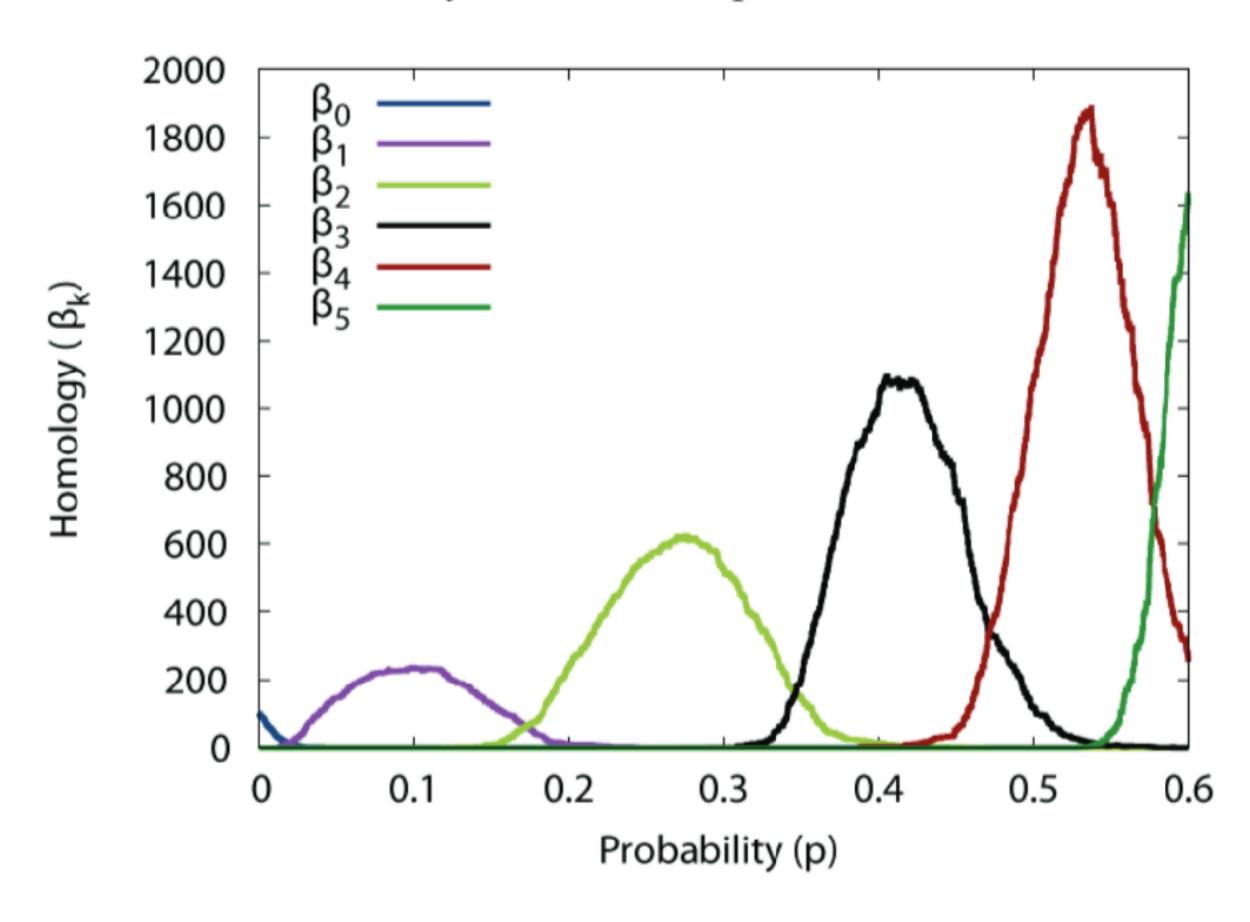
Erdos-Renyi Clique Complex



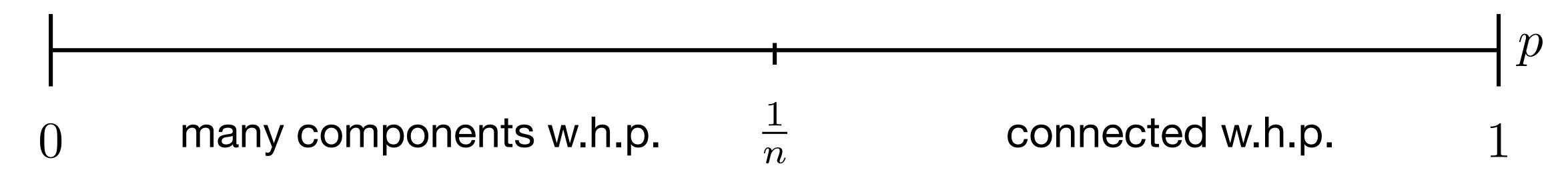
Betti Numbers



Erdős–Rényi random complex on n=100 vertices

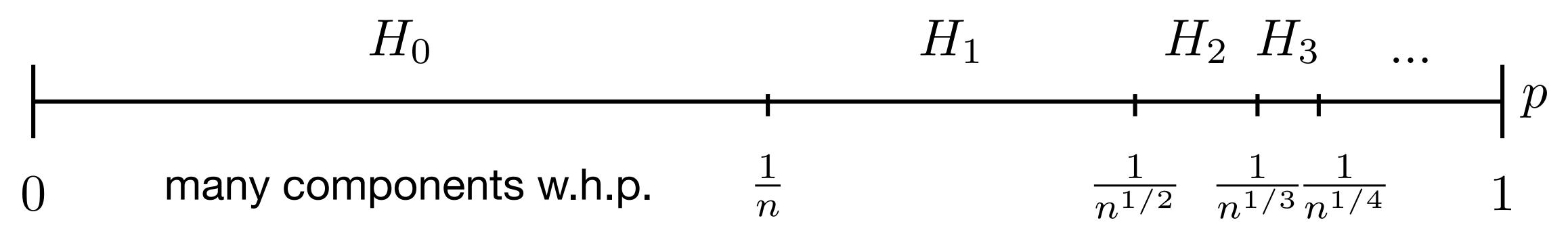


[Erdos-Renyi 1960]



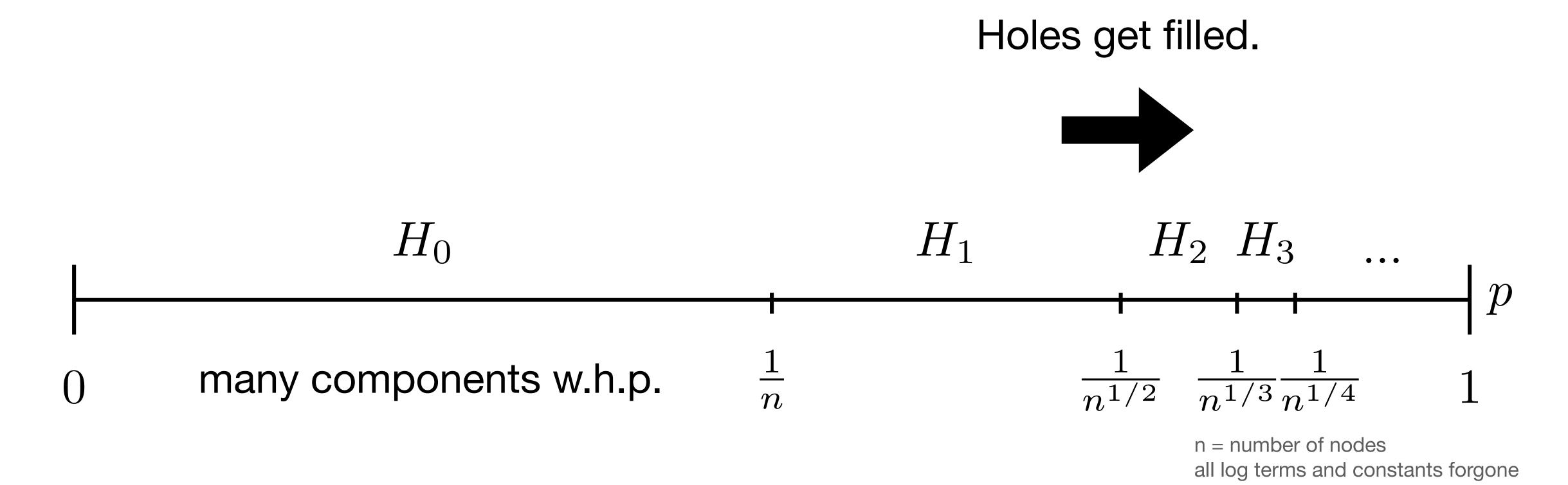
n = number of nodesall log terms and constants forgone

[Kahle 2009, 2014]

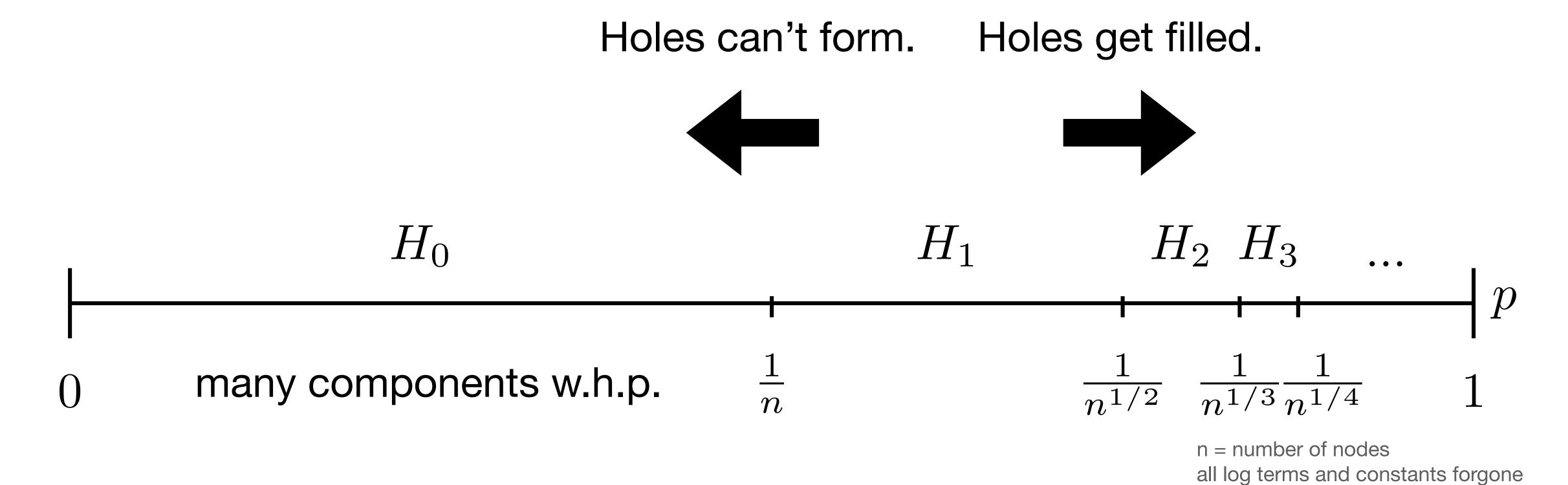


n = number of nodesall log terms and constants forgone

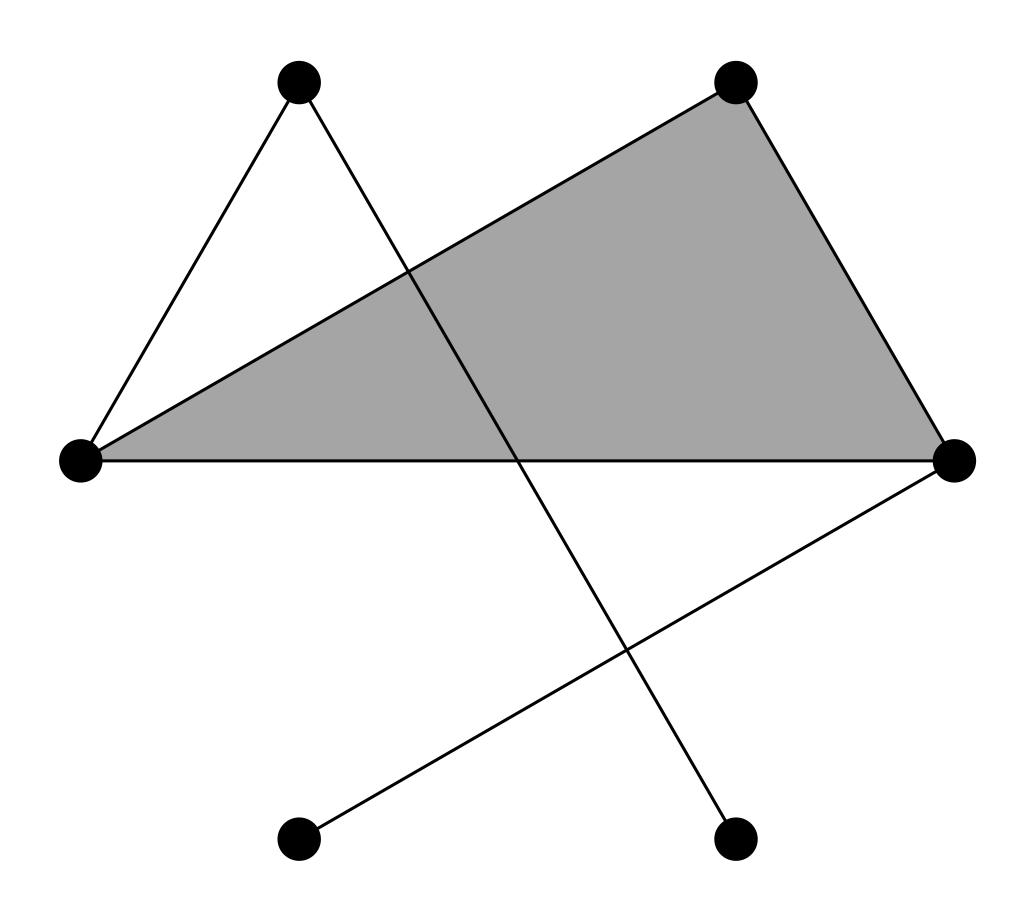
[Kahle 2009, 2014]



[Kahle 2009, 2014]



Erdos-Renyi Clique Complex



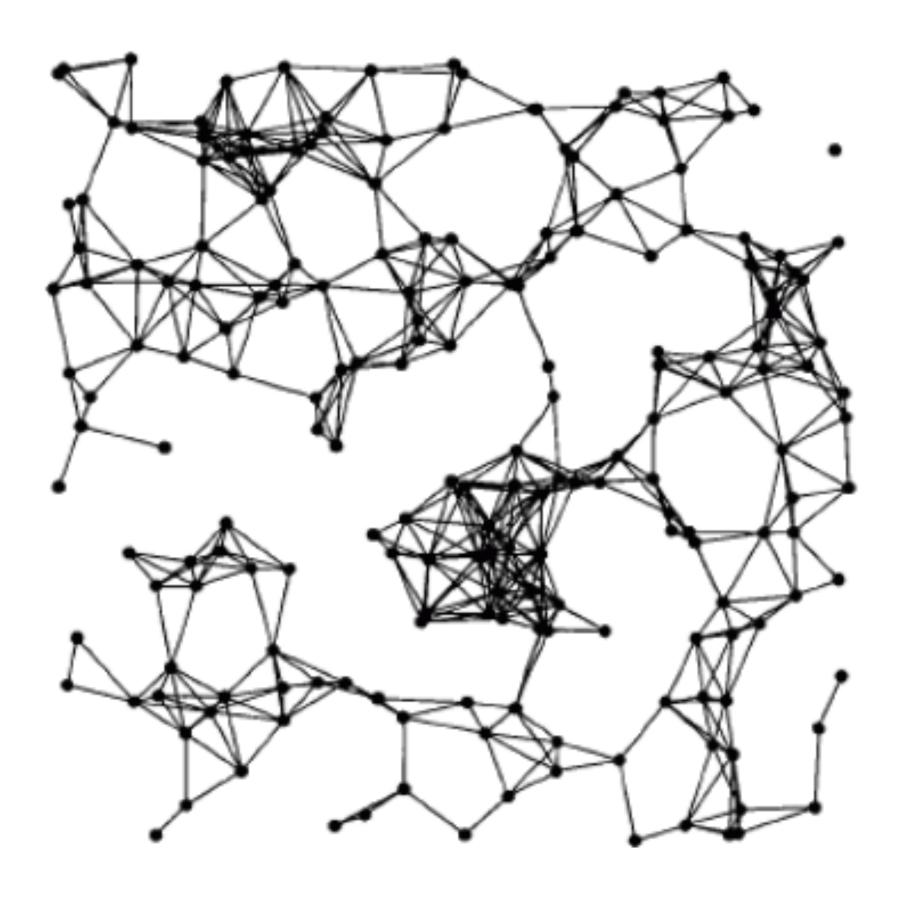


image credit: Penrose

- Rips
- Cech

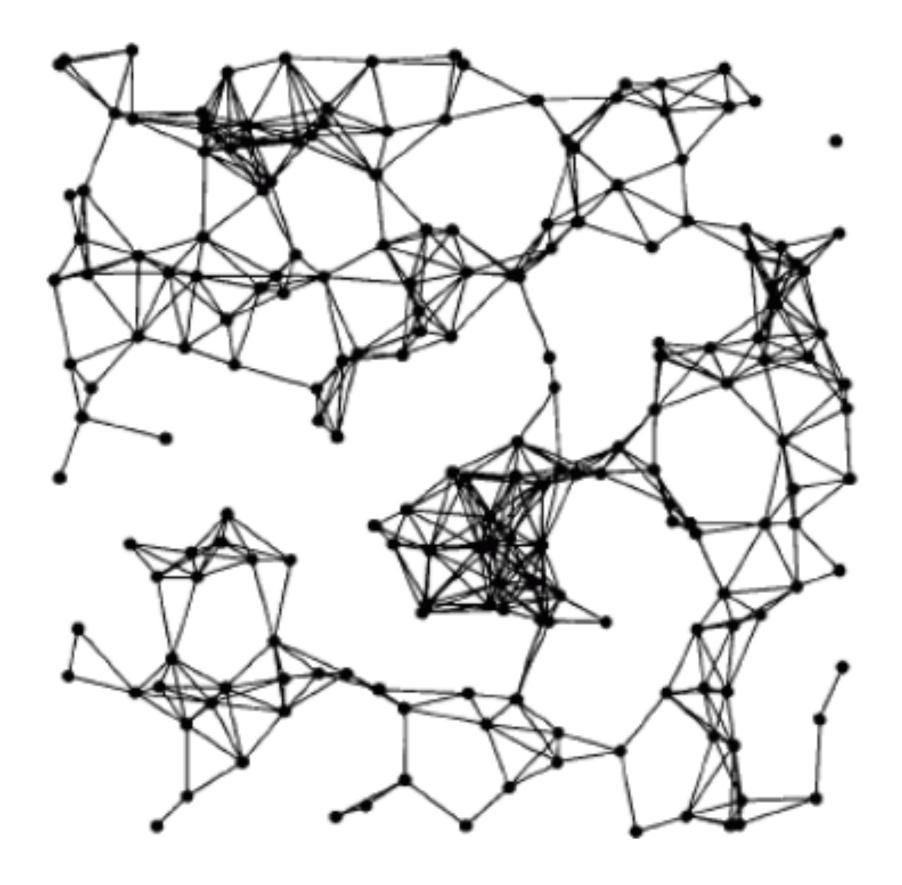


image credit: Penrose

- Rips (clique)
- Cech

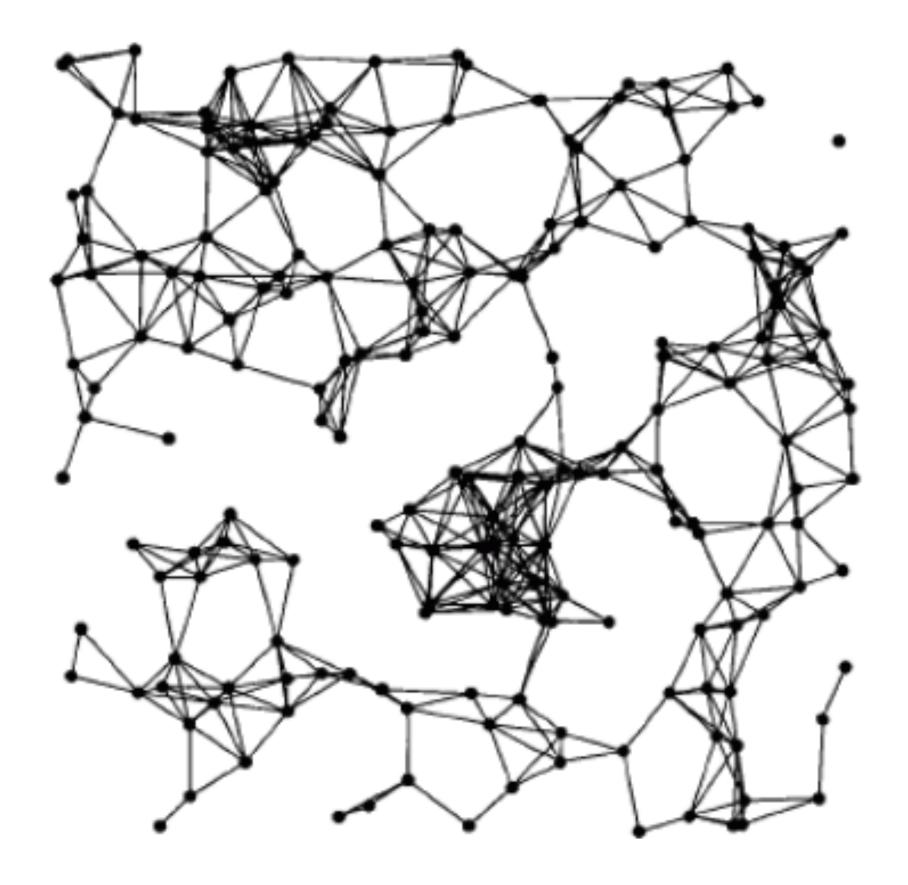
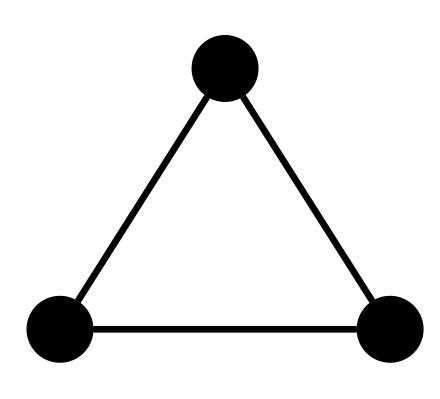


image credit: Penrose

- Rips (clique)
- Cech



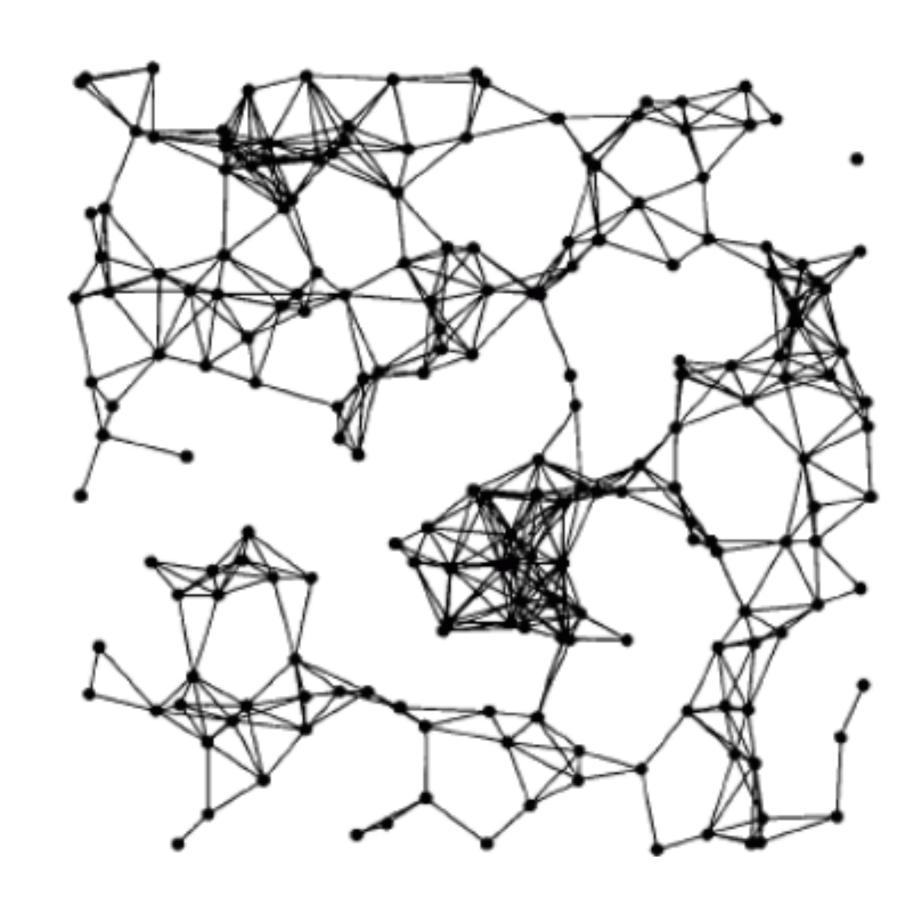
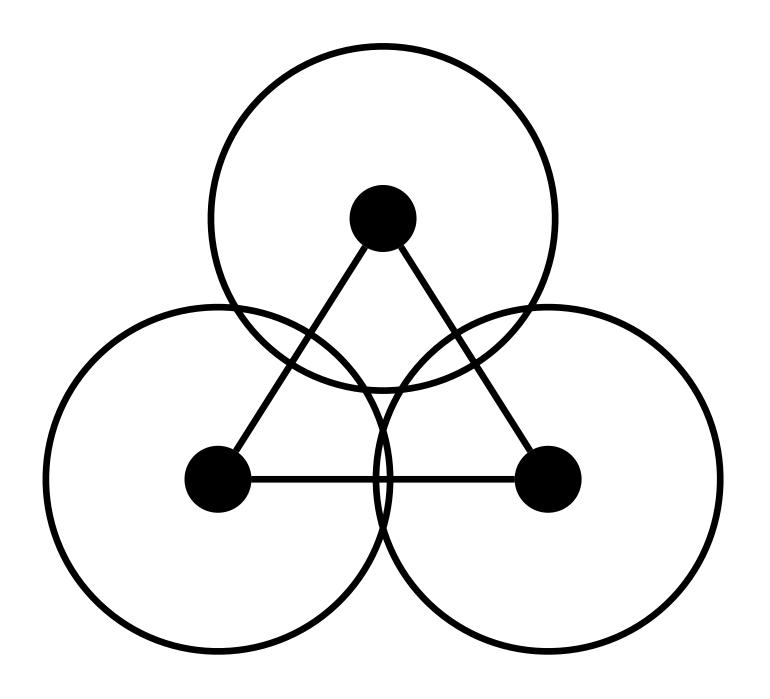
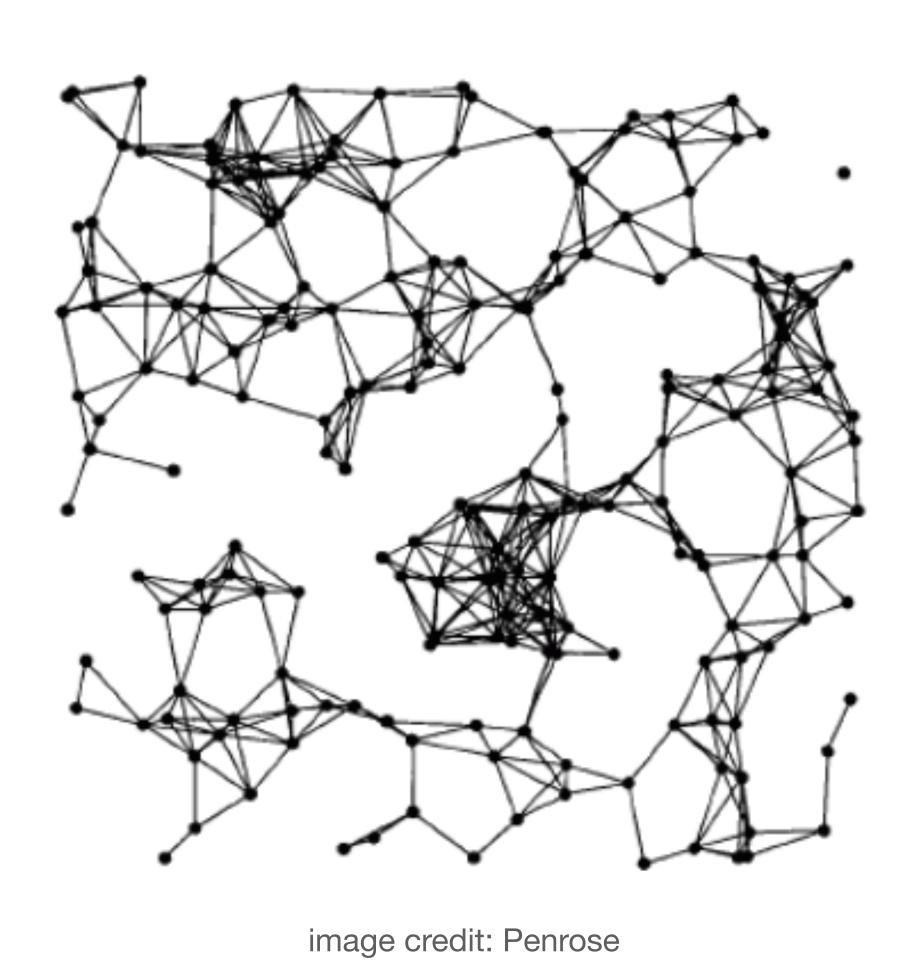


image credit: Penrose

- Rips (clique)
- Cech





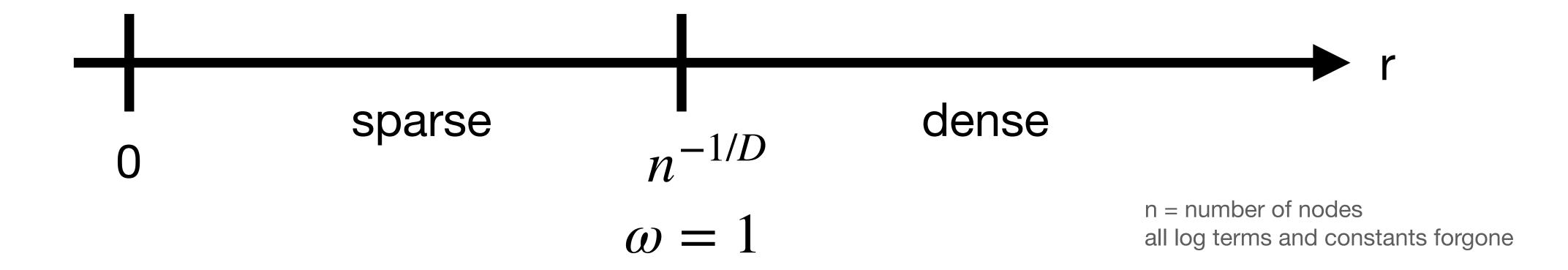
Expected Betti numbers at dimension k

[Kahle 2011]

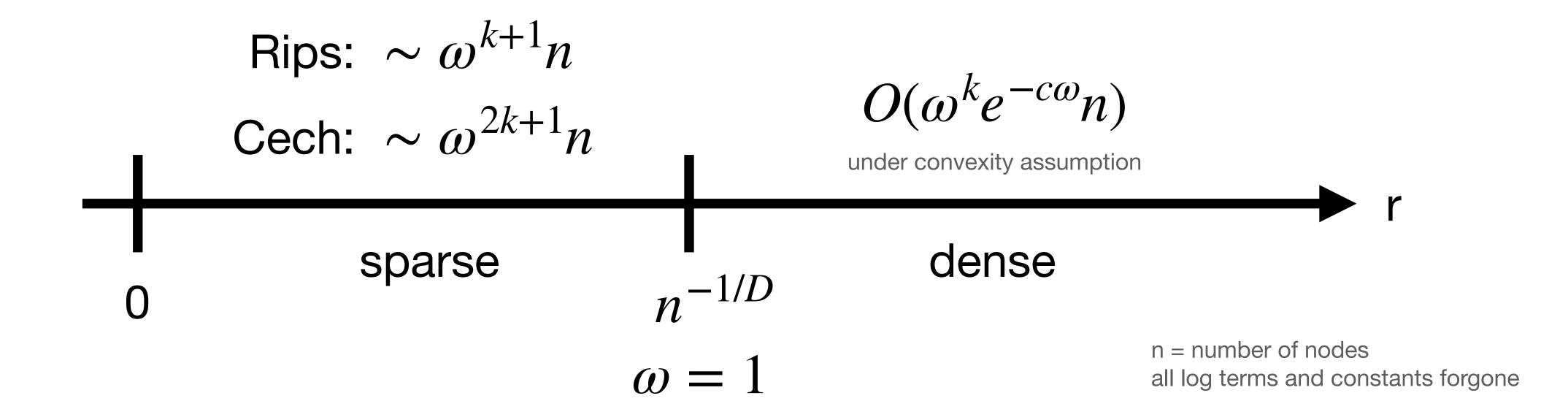
• *n*, the number of points

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

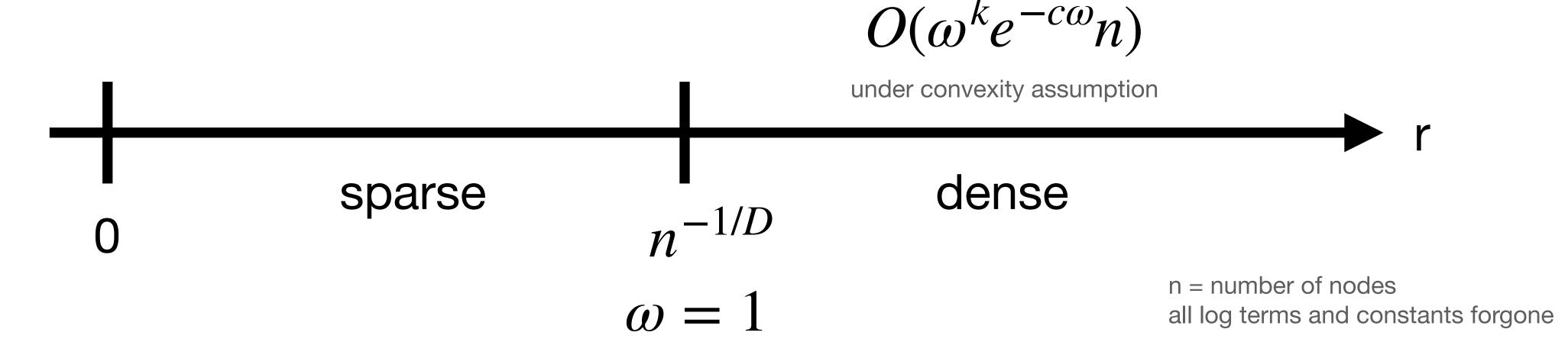
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension



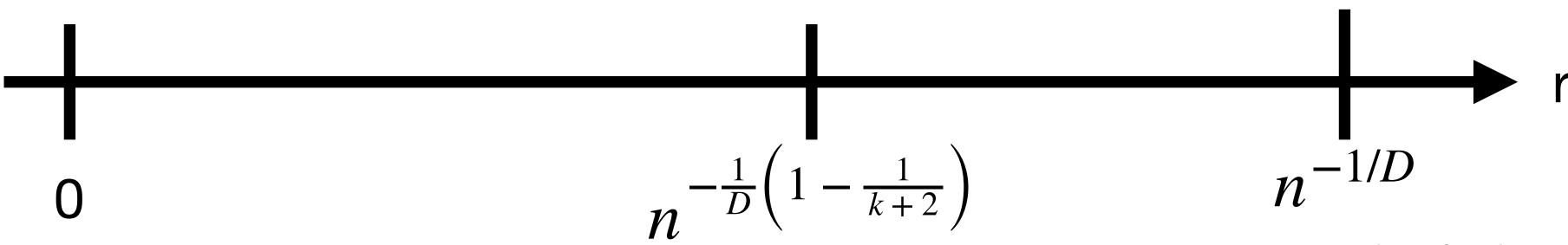
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension



- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

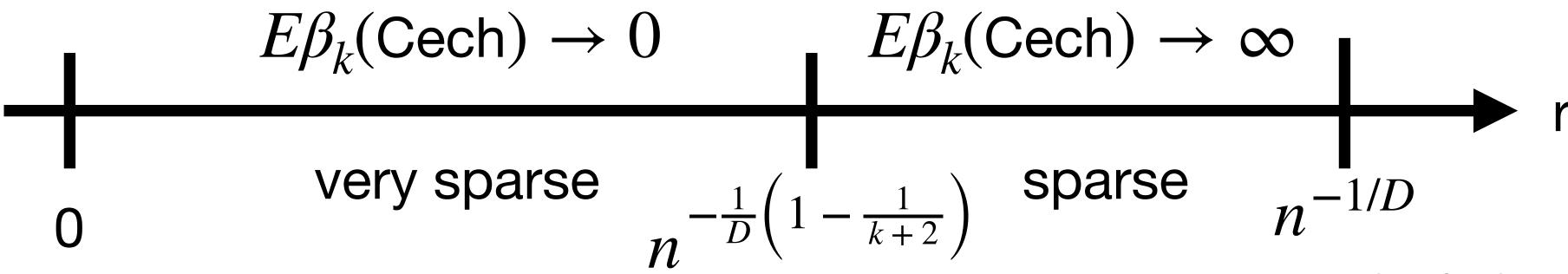


- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



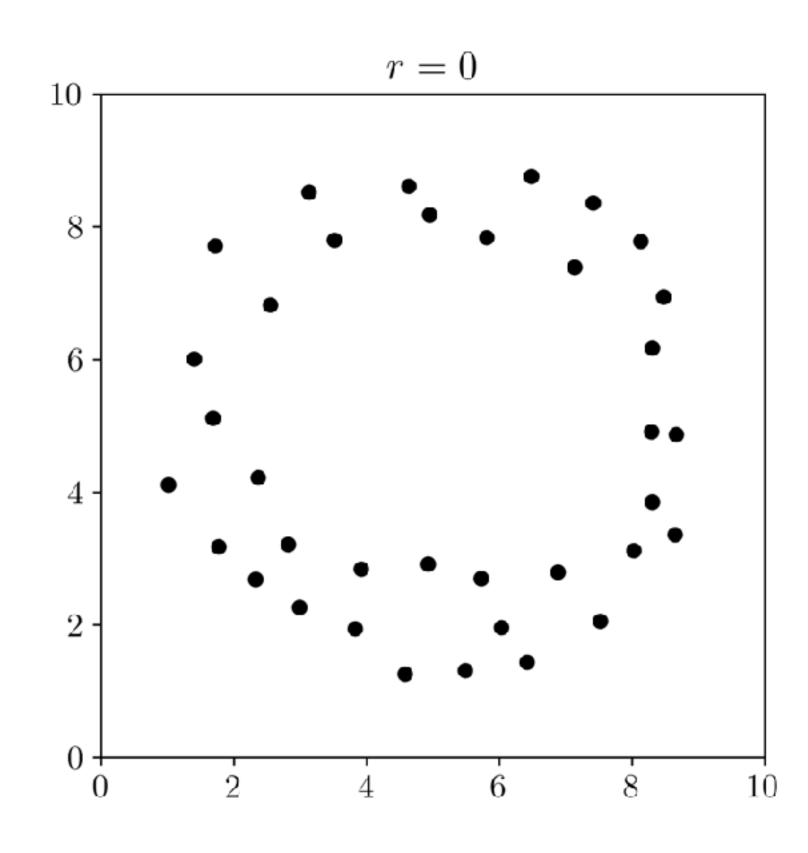
n = number of nodesall log terms and constants forgone

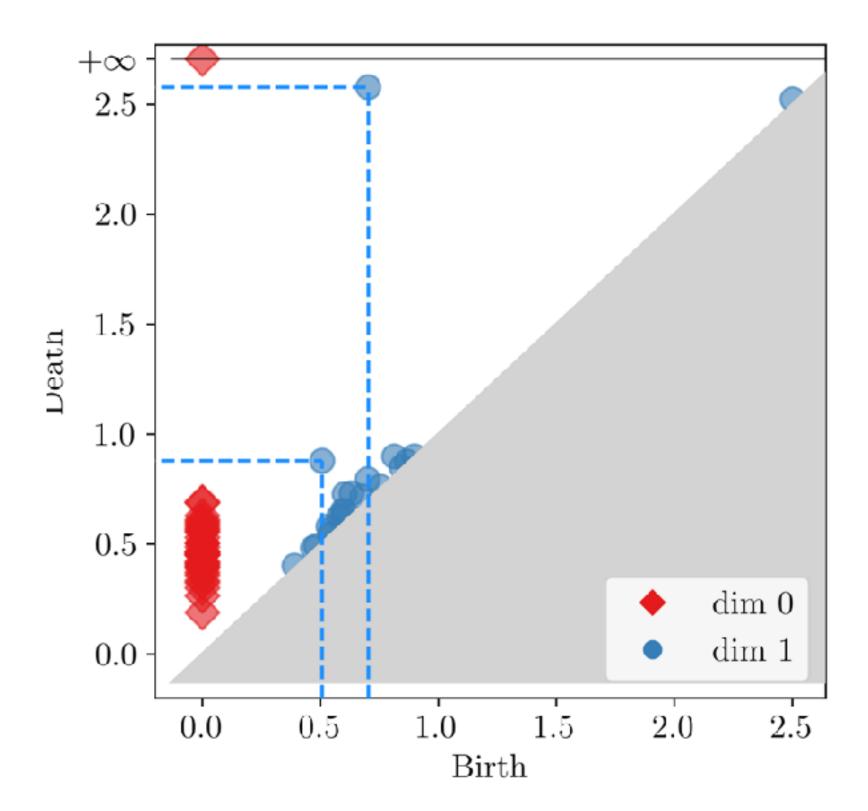
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



n = number of nodesall log terms and constants forgone

Maximally Persistent Cycles





Maximally Persistent Cycles

n points in expectation

k-cycle

Maximally Persistent Cycles

[Bobrowski-Kahle-Skraba 2017]

n points in expectation

k-cycle

$$c\left(\frac{\log n}{\log\log n}\right)^{1/k} \le \text{max persistence} \le C\left(\frac{\log n}{\log\log n}\right)^{1/k}$$
a.a.s.

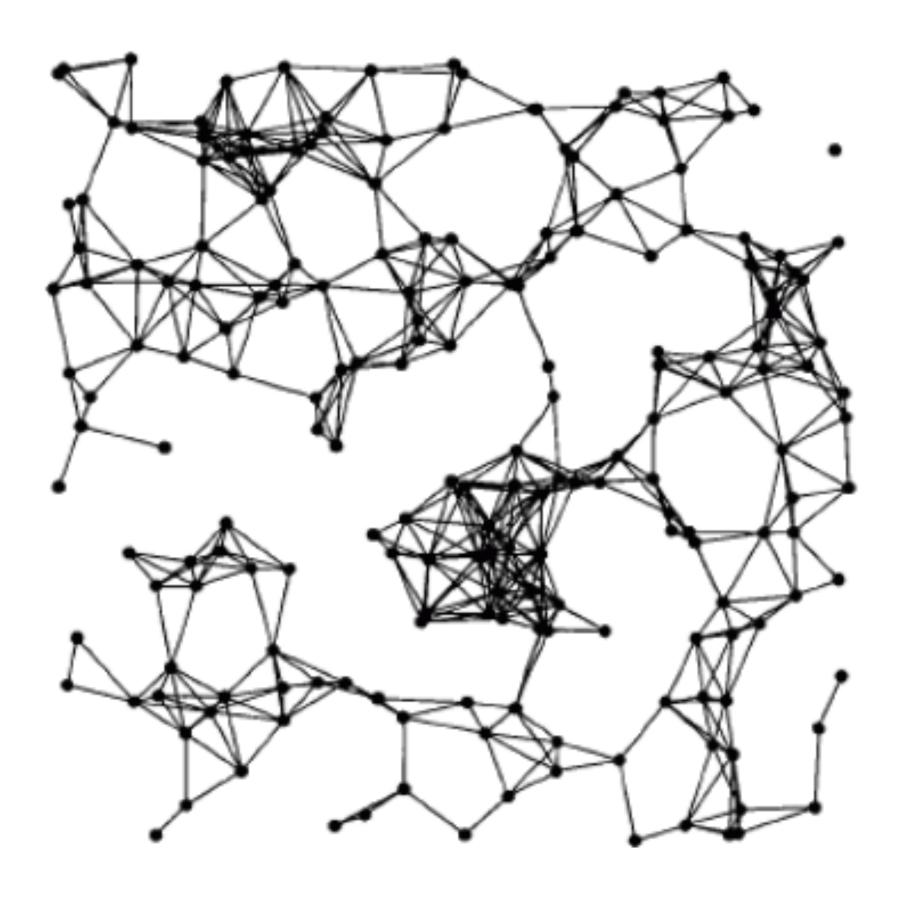
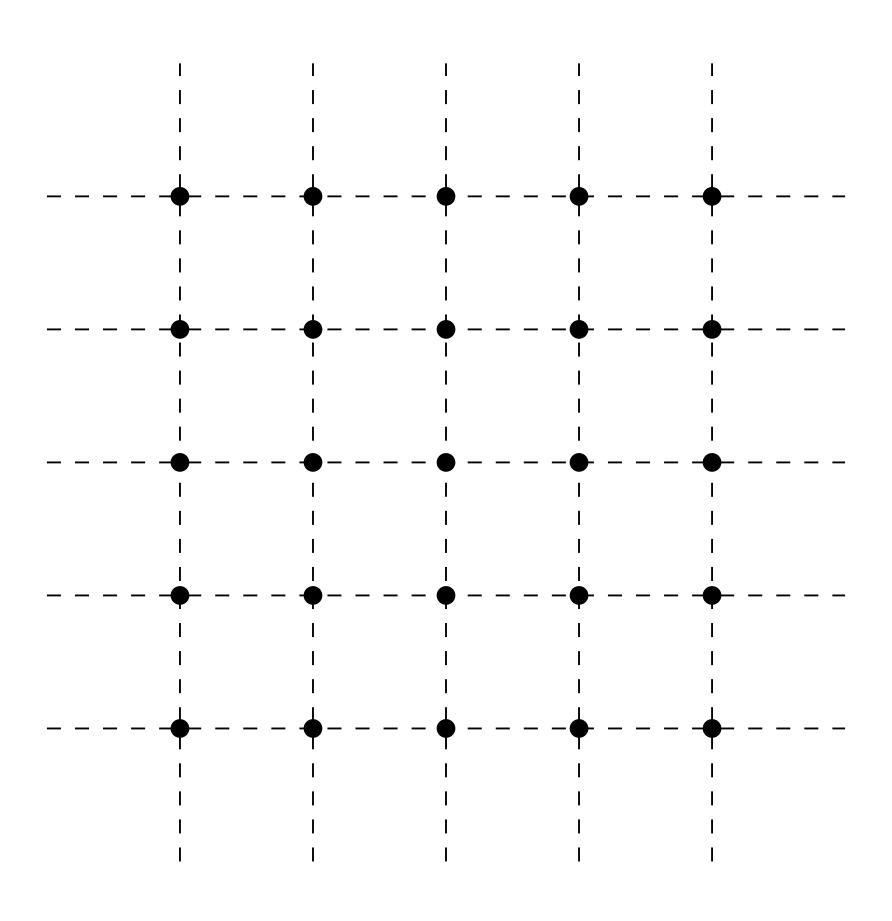
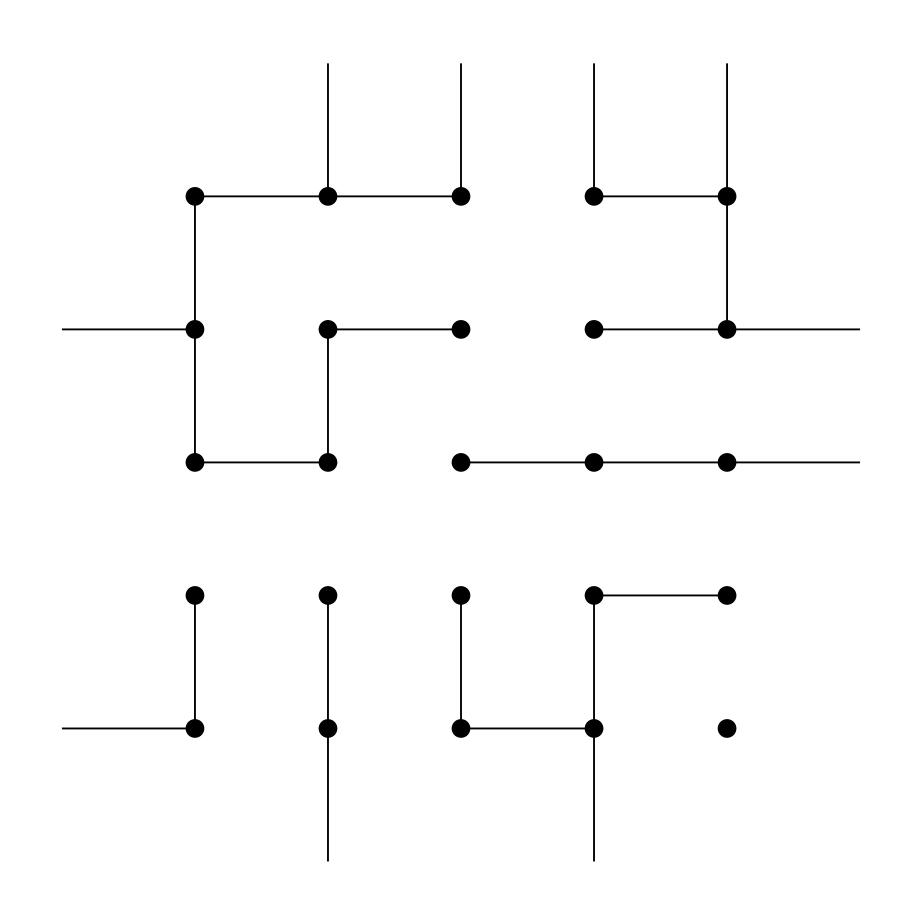


image credit: Penrose

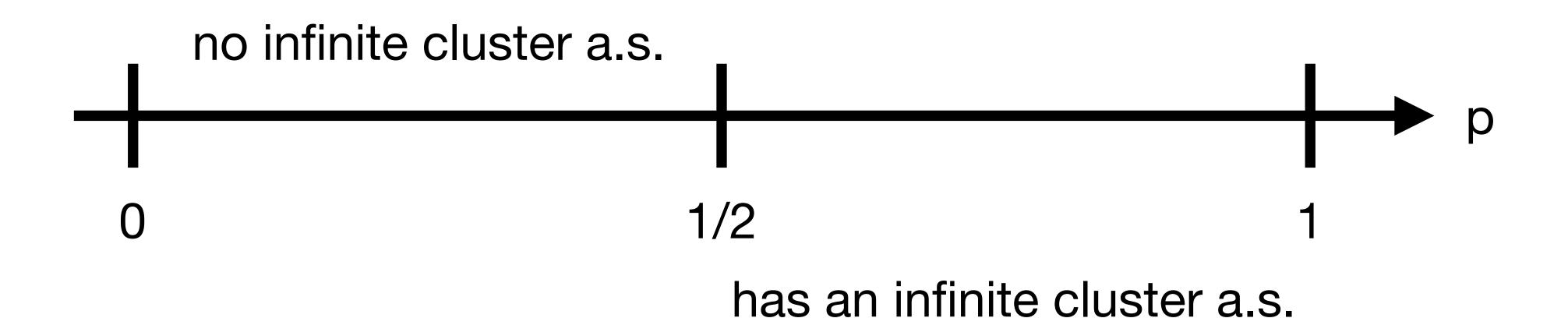
Bernoulli Bond Percolation



Bernoulli Bond Percolation

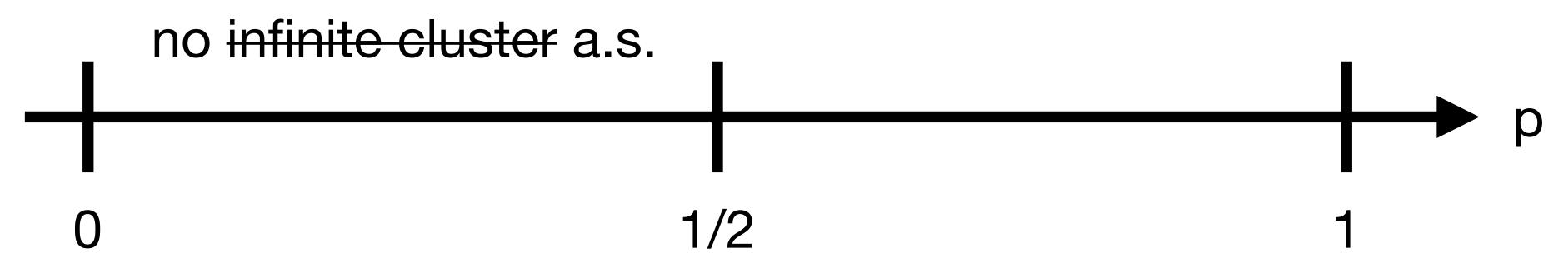


[Harris 1960, Kesten 1980]



[Harris 1960, Kesten 1980]

giant component

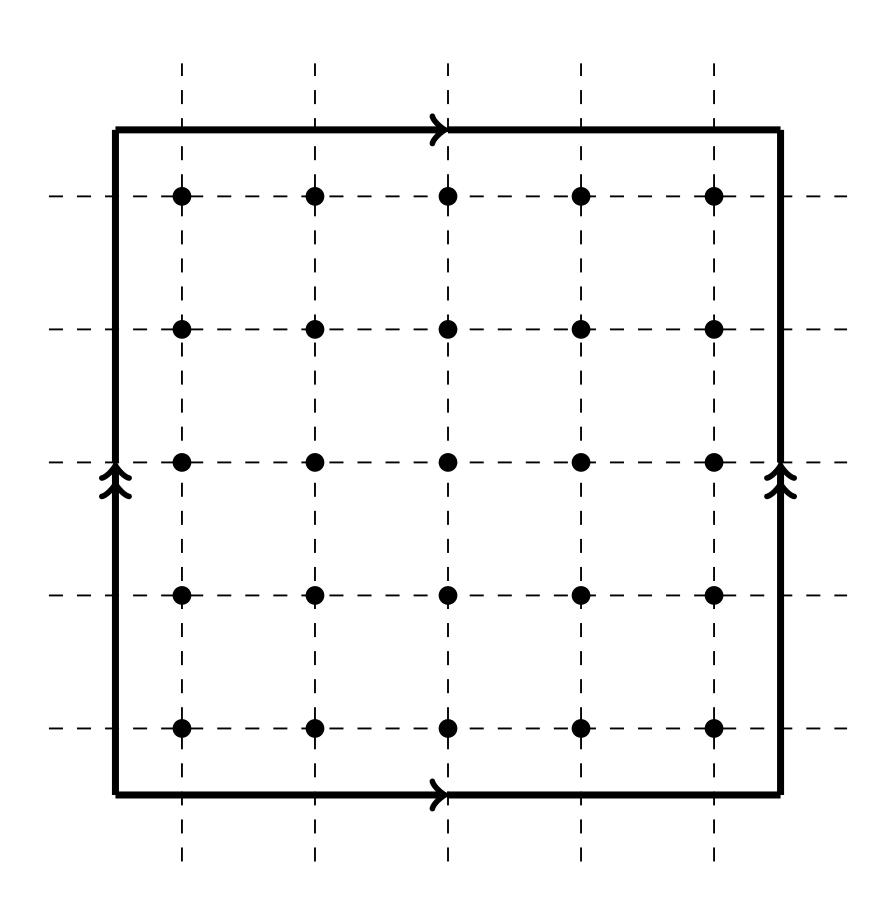


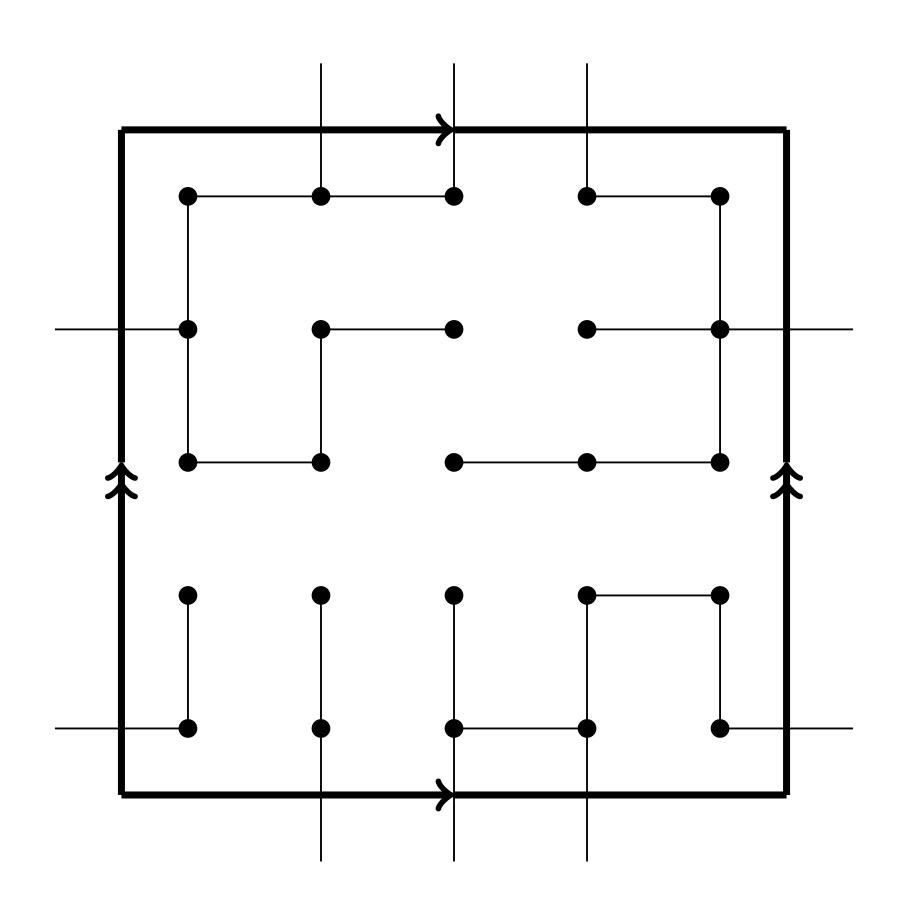
has an infinite cluster a.s.

giant component

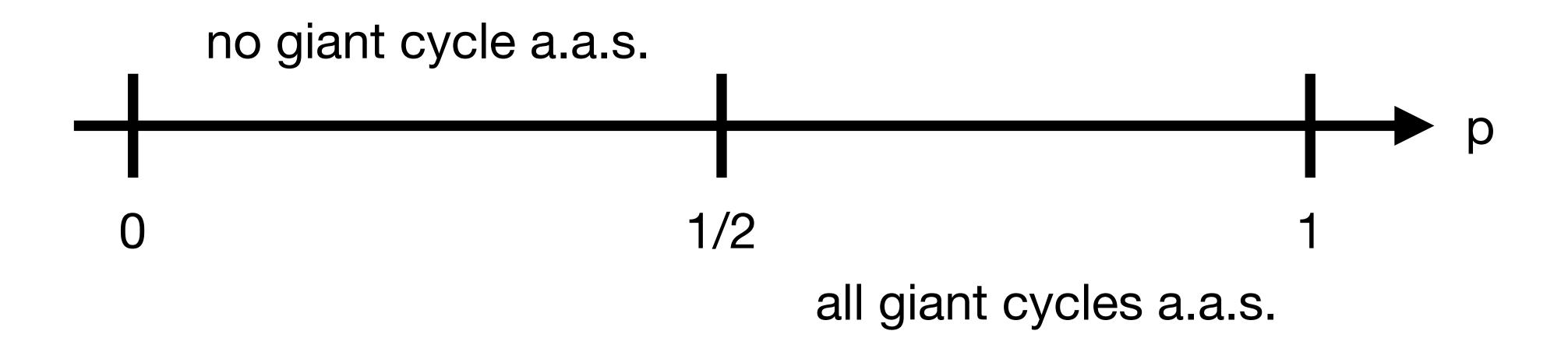
Giant Cycles?

Bernoulli Bond Percolation

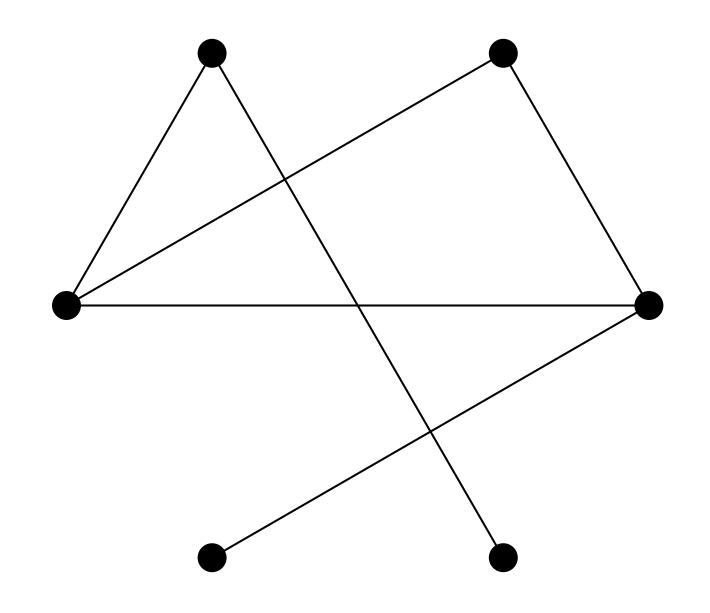




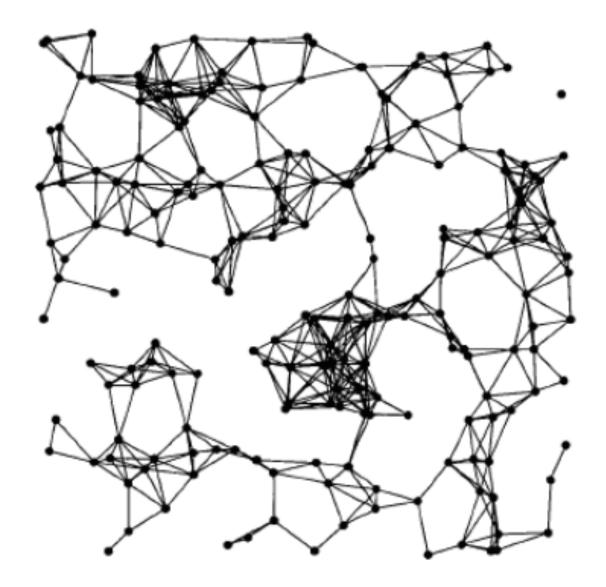
[Duncan-Kahle-Schweinhart, 2021]



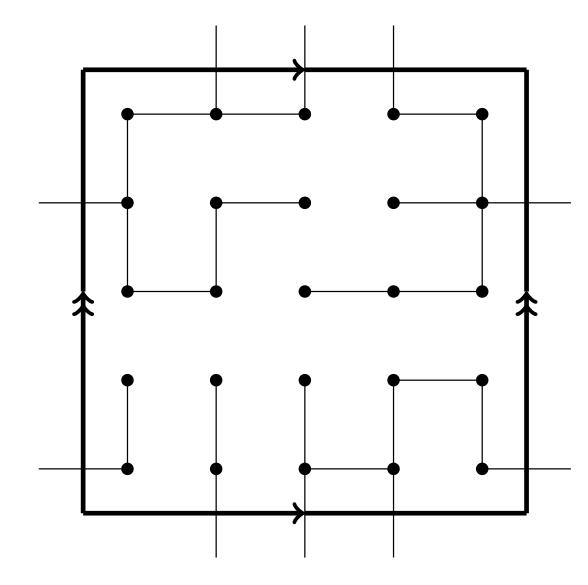
Tapas at Random Topology



Erdo-Renyi Complexes



Geometric Complexes



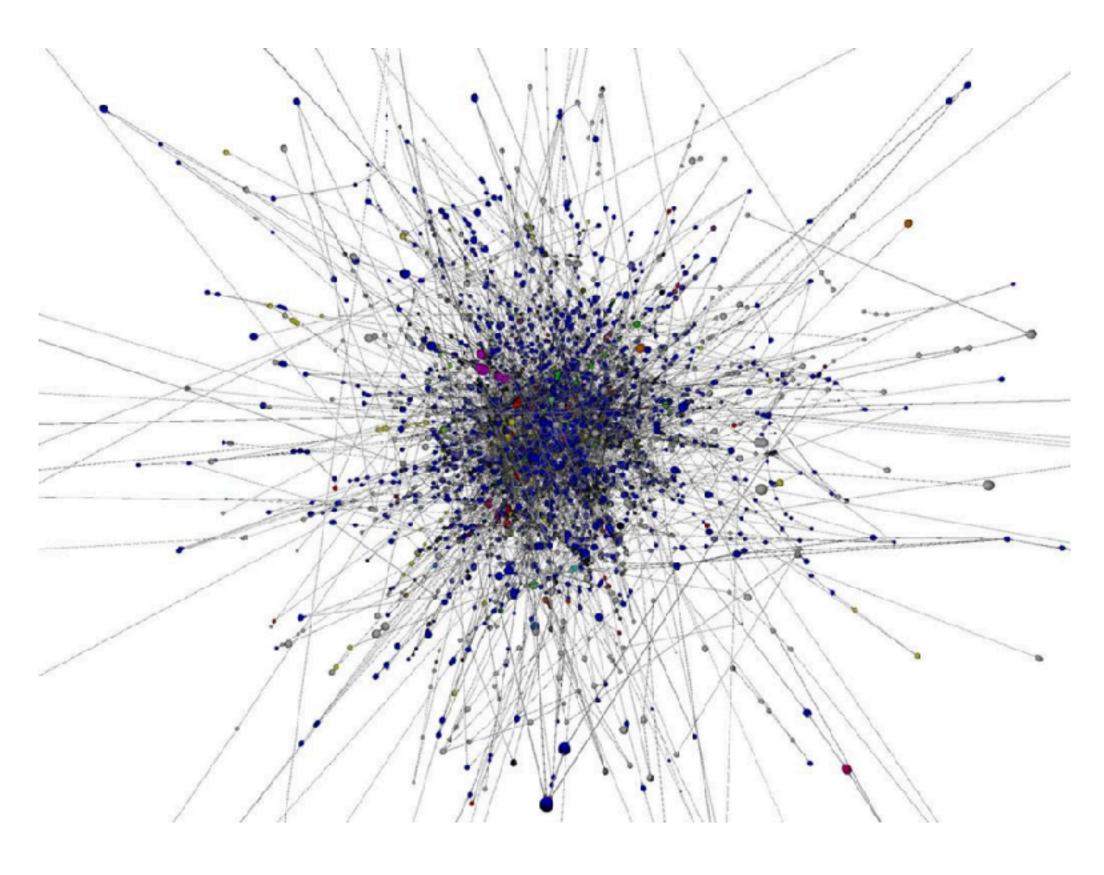
Topological Percolation

III. Preferential Attachment

A Non-Homogeneous Model

Preferential Attachment

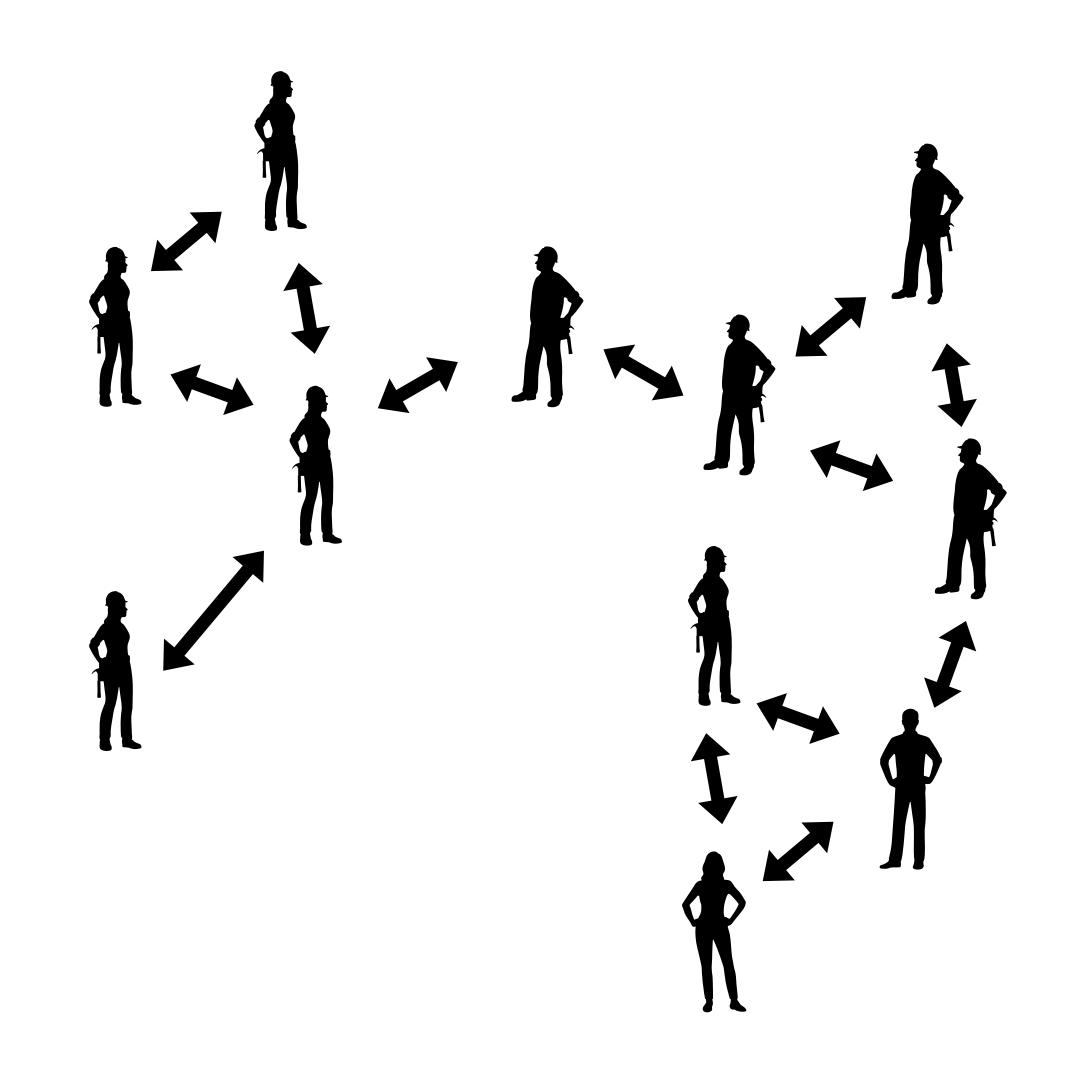
[Albert and Barabasi 1999]



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

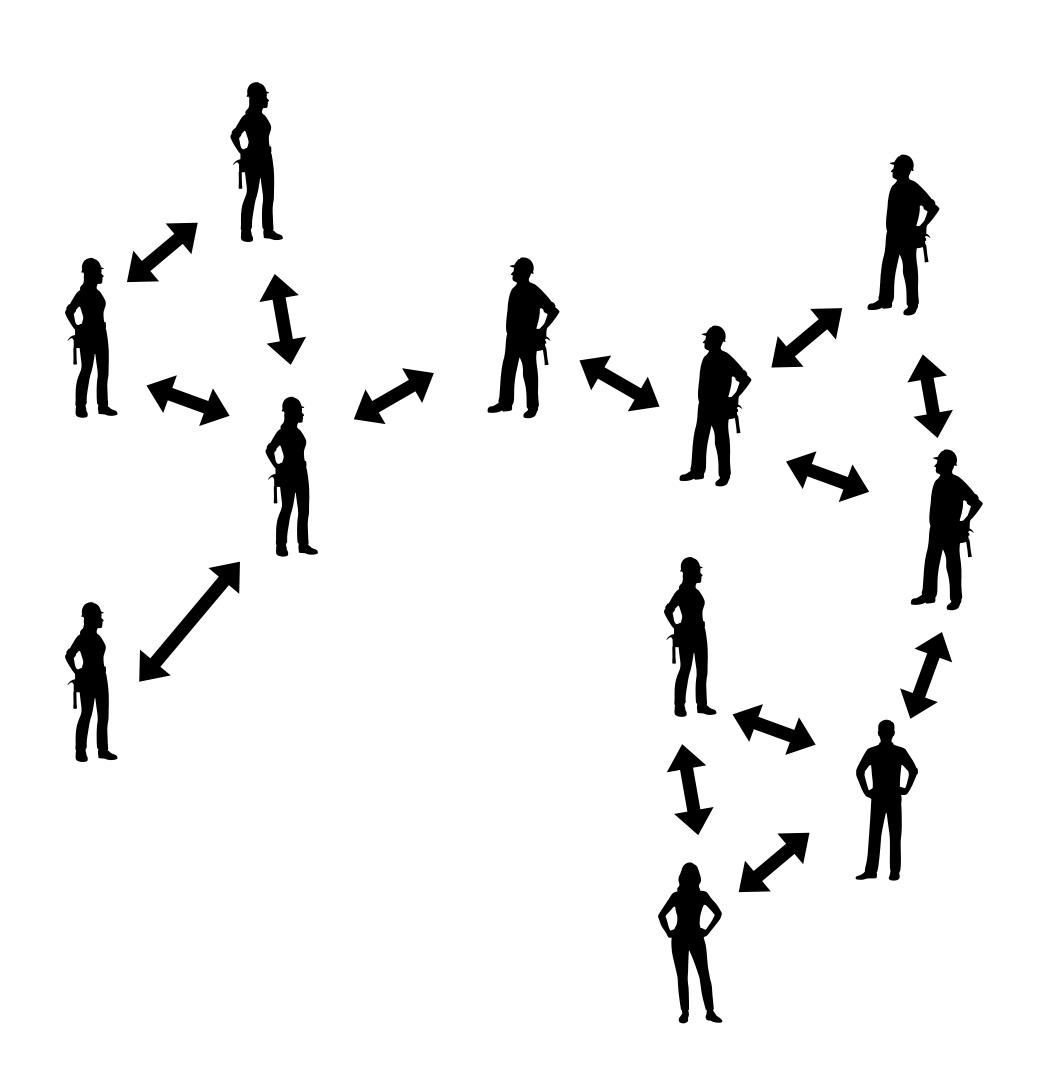
Preferential Attachment

[Albert and Barabasi 1999]

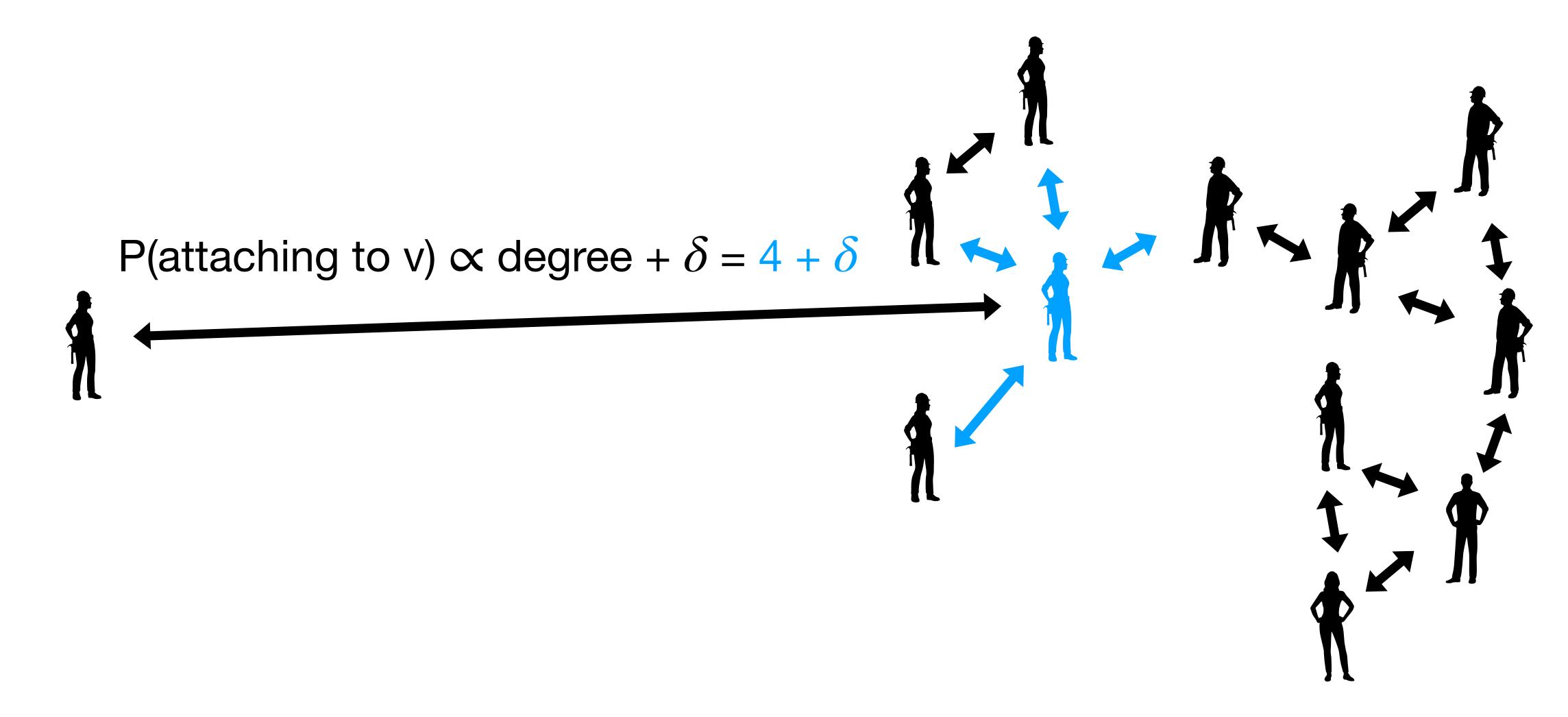


Preferential Attachment

[Albert and Barabasi 1999]

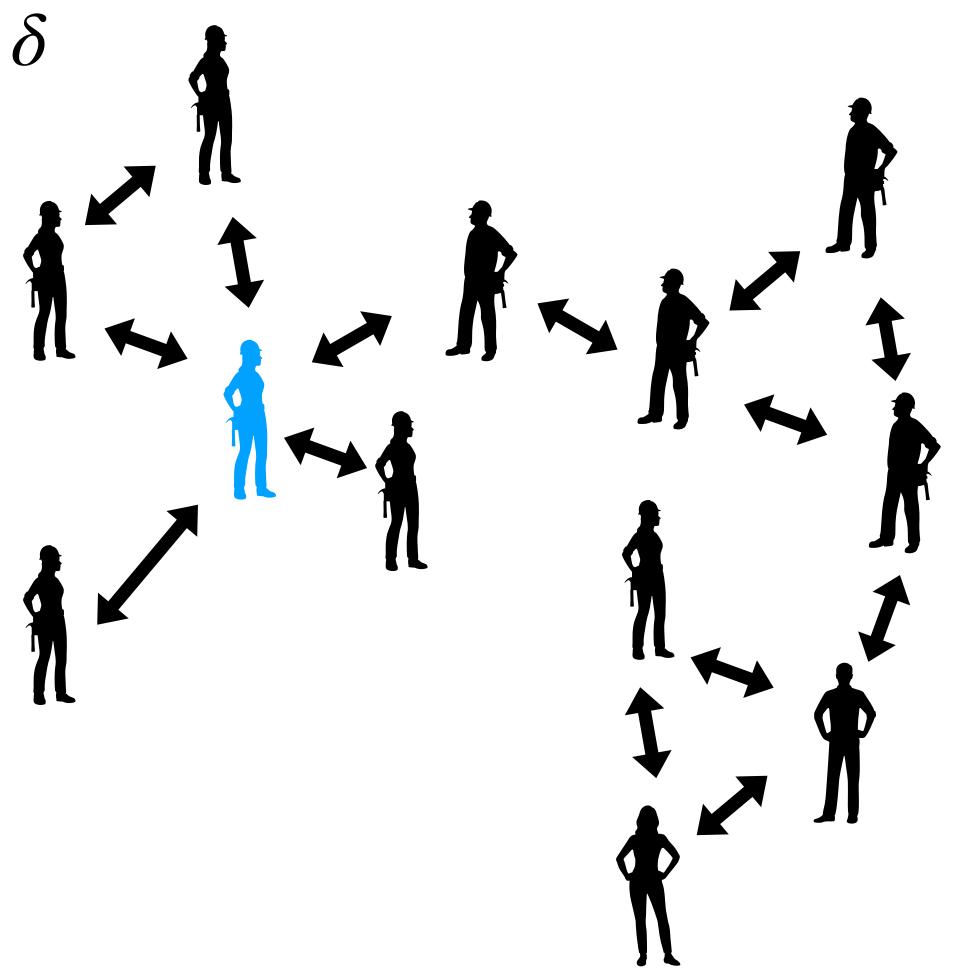


[Albert and Barabasi 1999]



[Albert and Barabasi 1999]

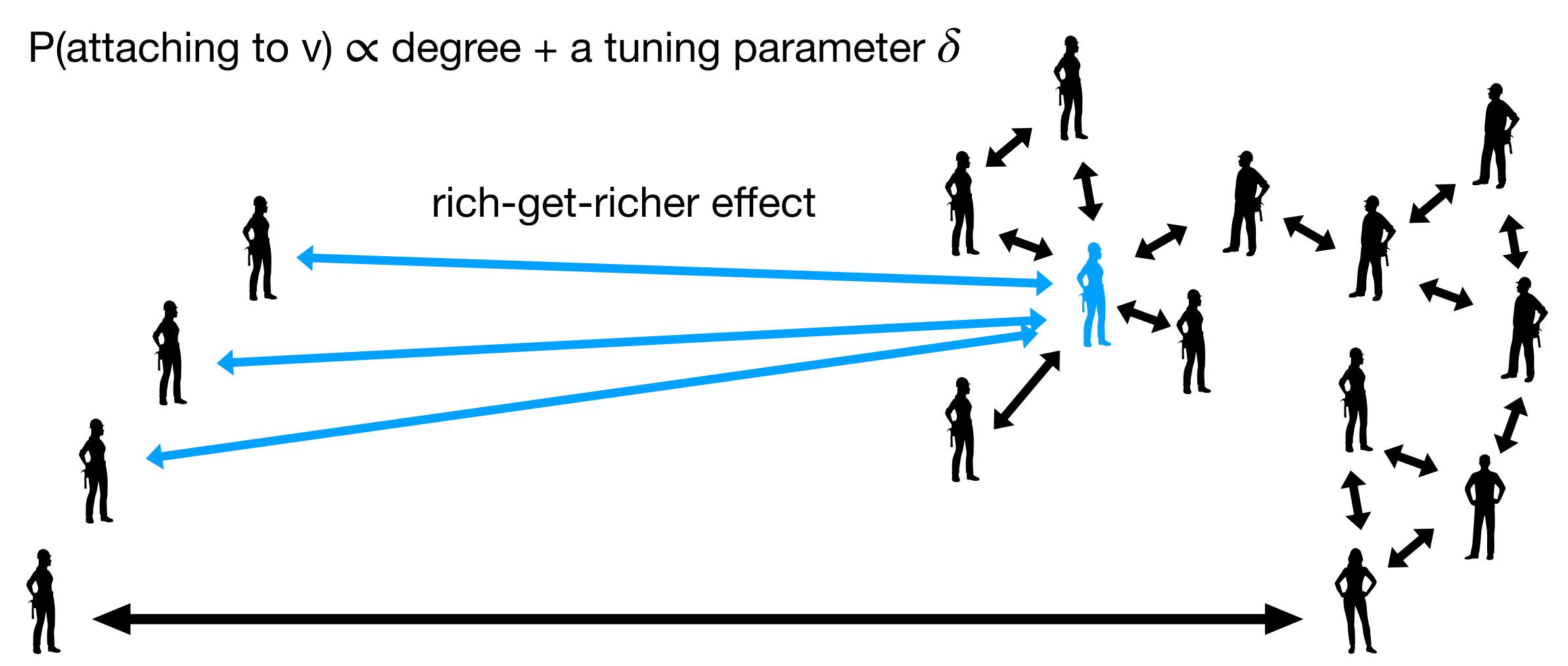
P(attaching to v) \propto degree + a tuning parameter δ



[Albert and Barabasi 1999]

P(attaching to v) \propto degree + a tuning parameter δ

[Albert and Barabasi 1999]



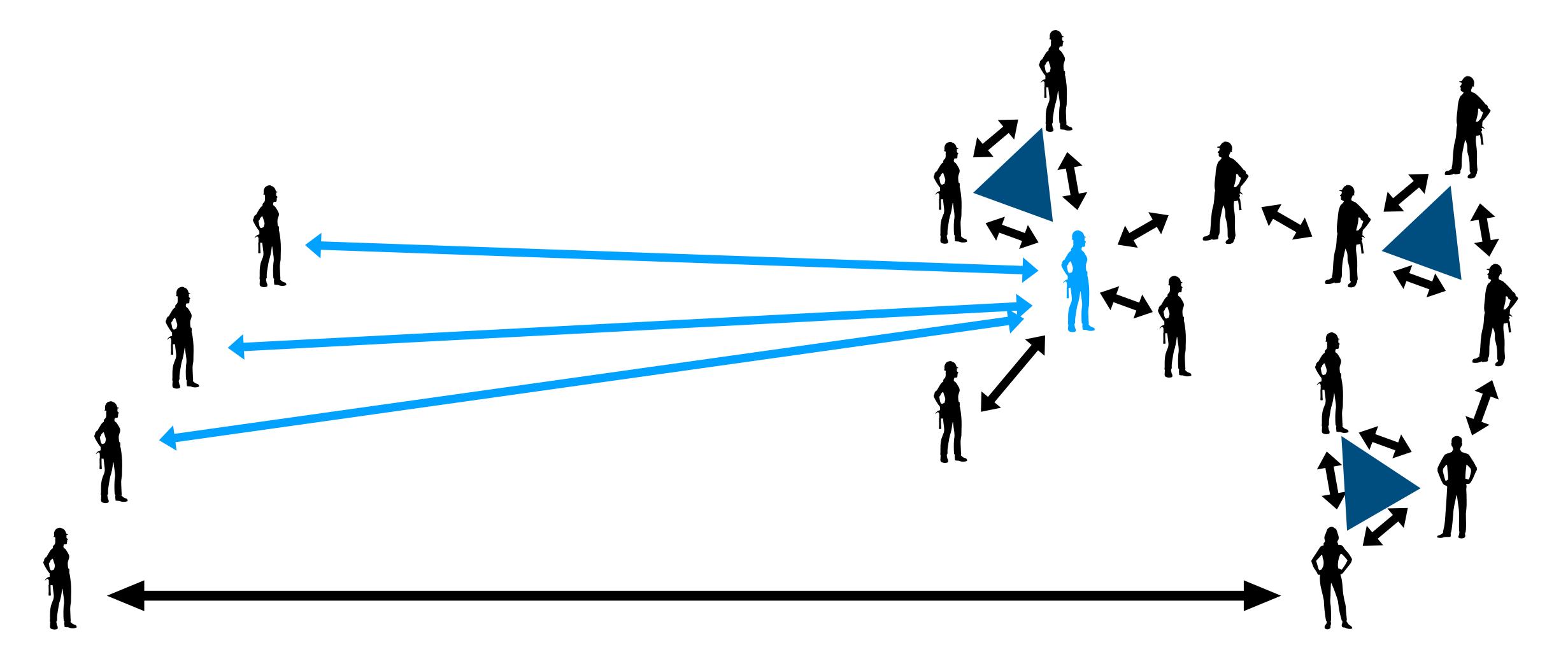
 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

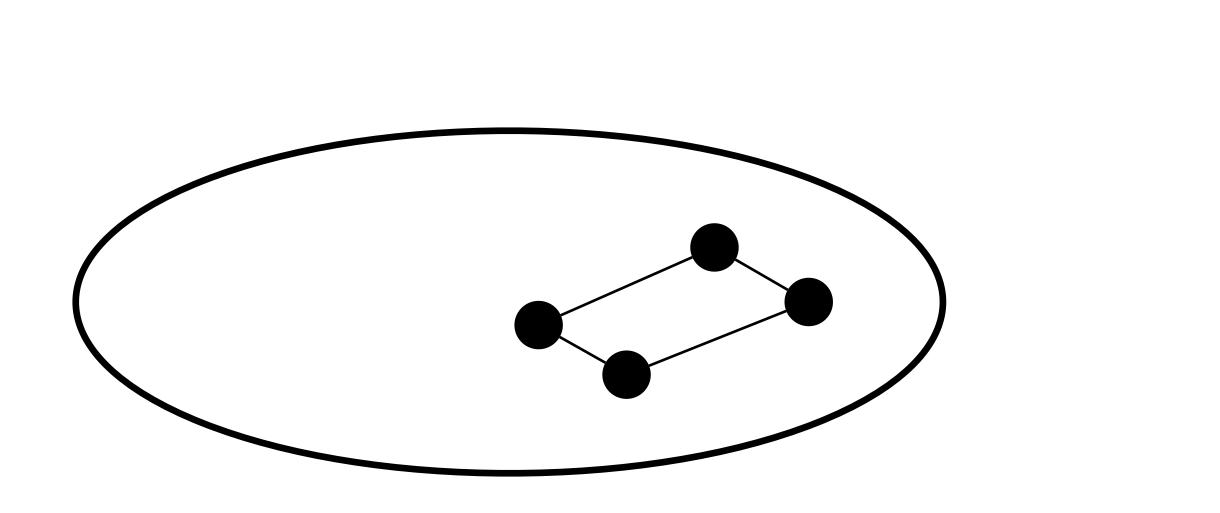
- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

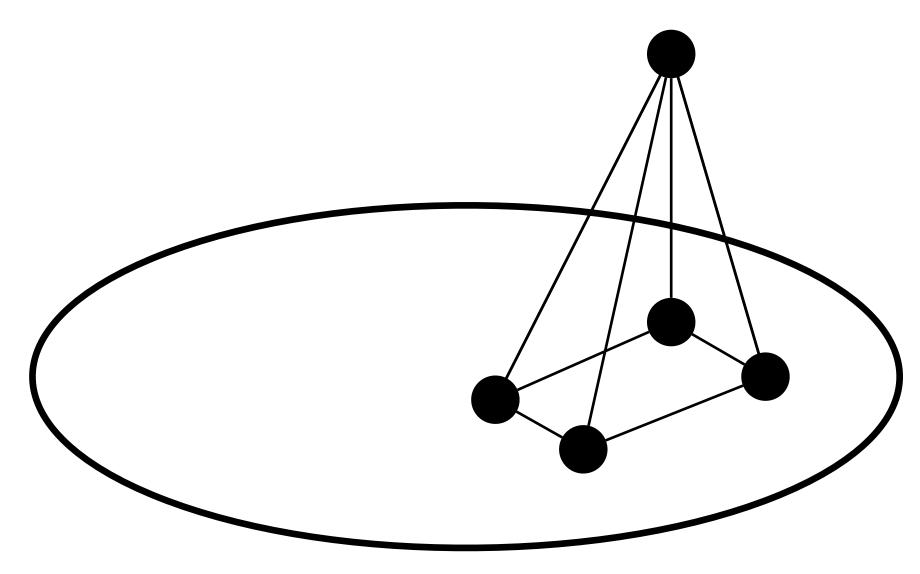
Clique Complex

aka Flag Complex



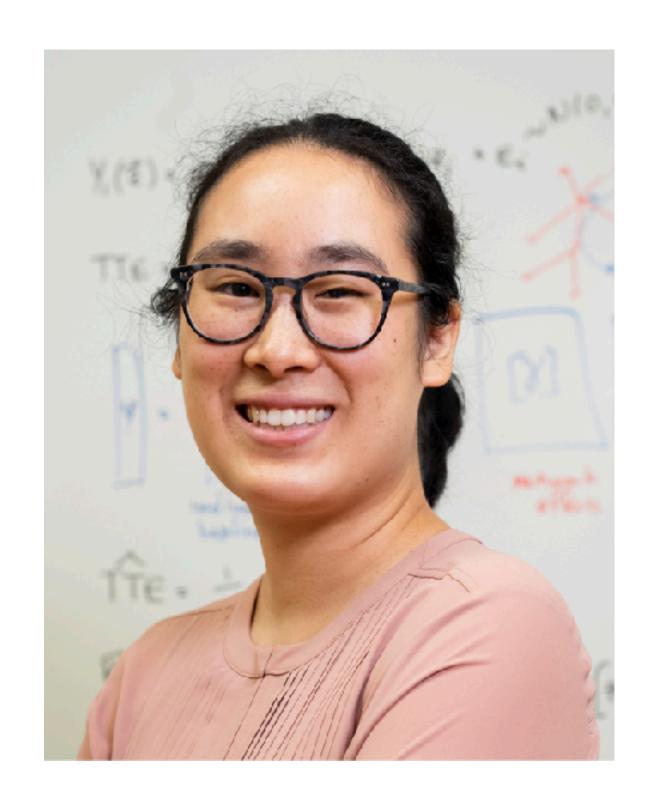
Clique Complex = Mapping Cone





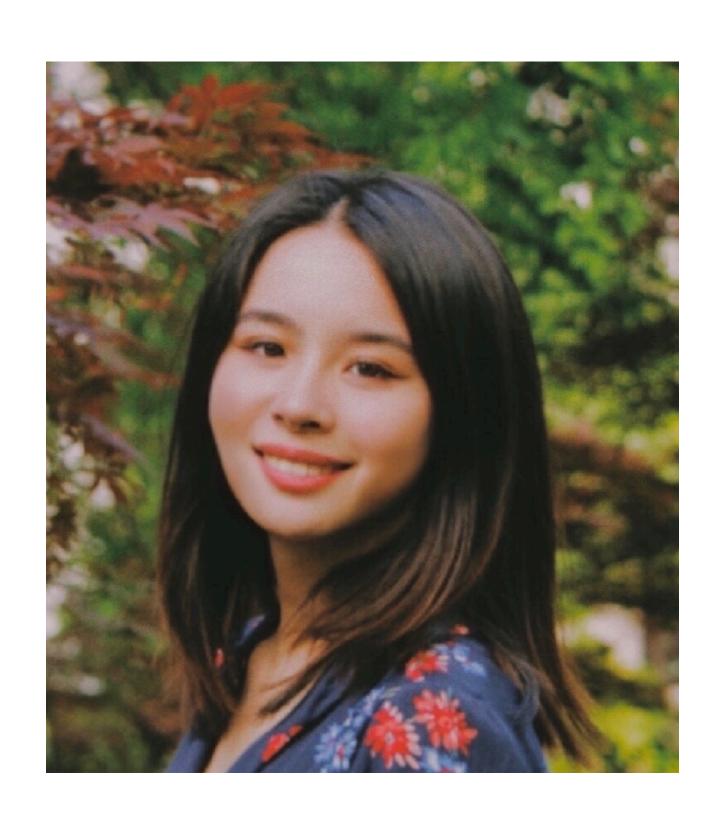
III Topology of Preferential Attachment

My Lovely Collaborators

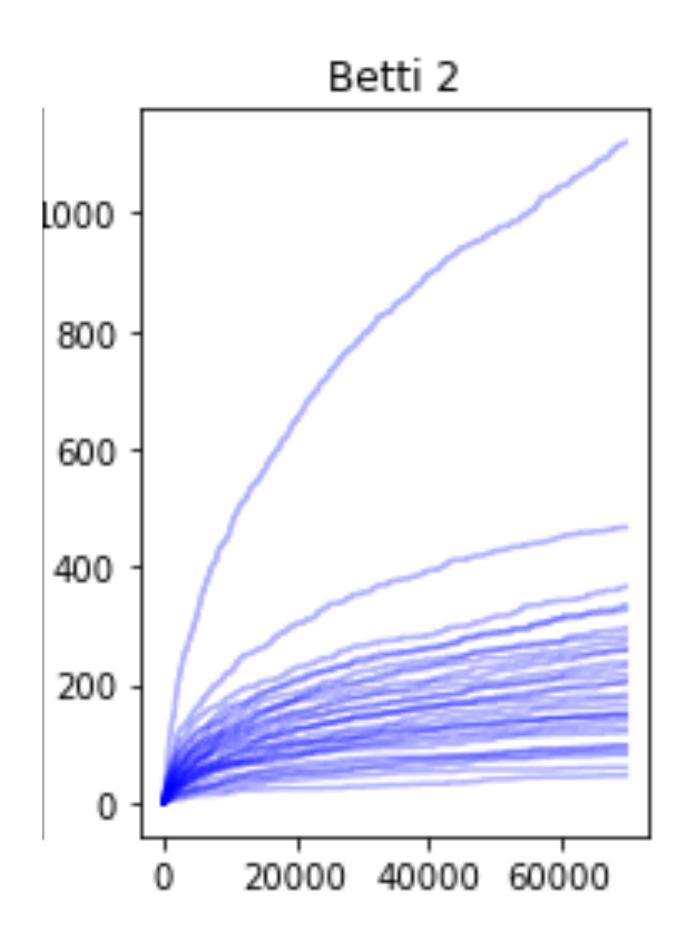


Christina Lee Yu

Gennady Samorodnitsky

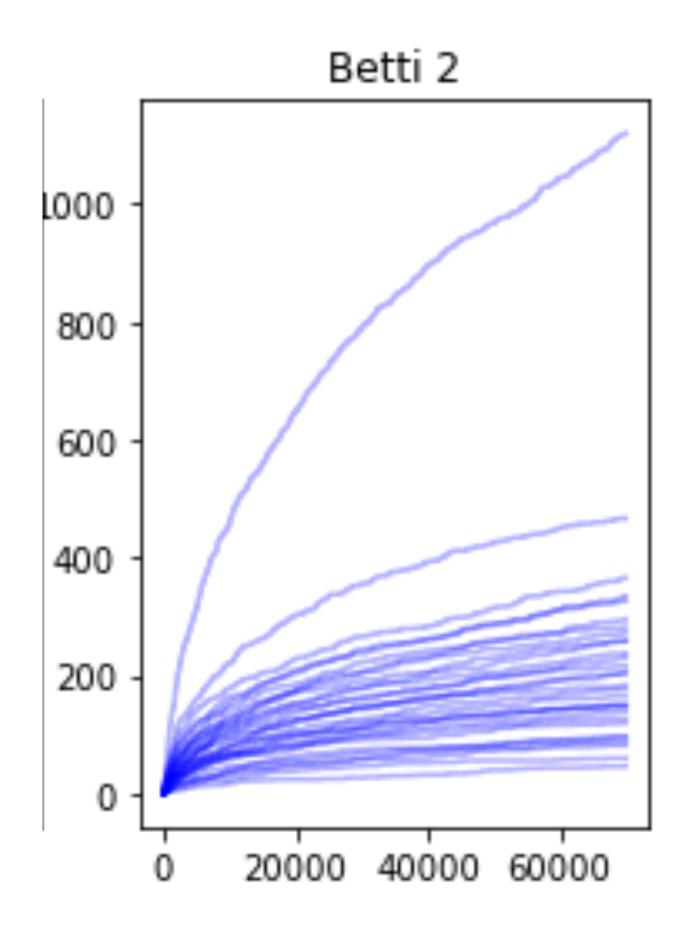


Rongyi He (Caroline)



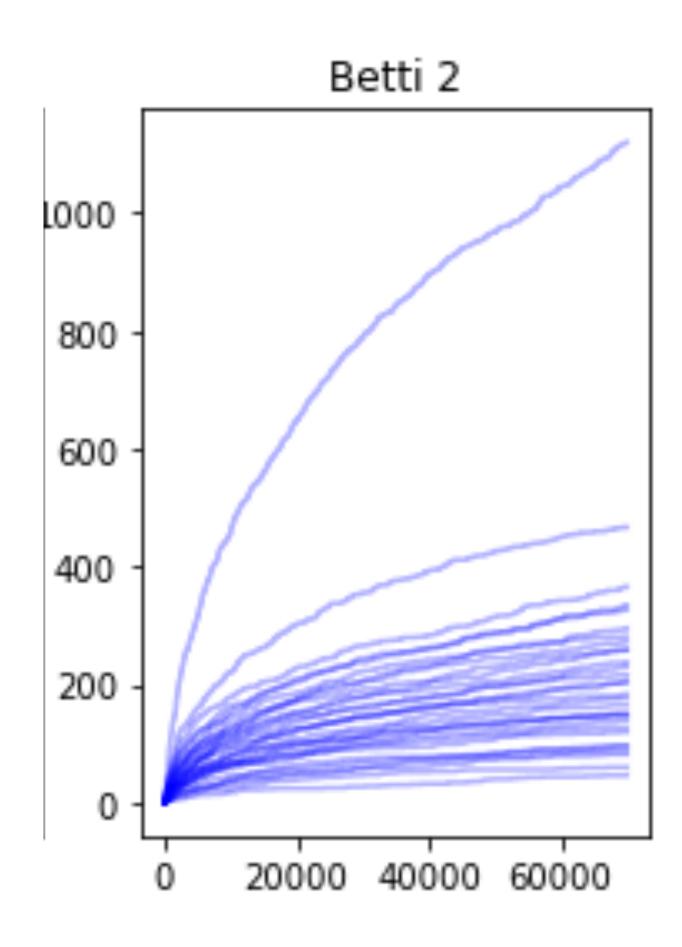
Different curves, different random seeds.
All curves have the same model parameters.

increasing trend



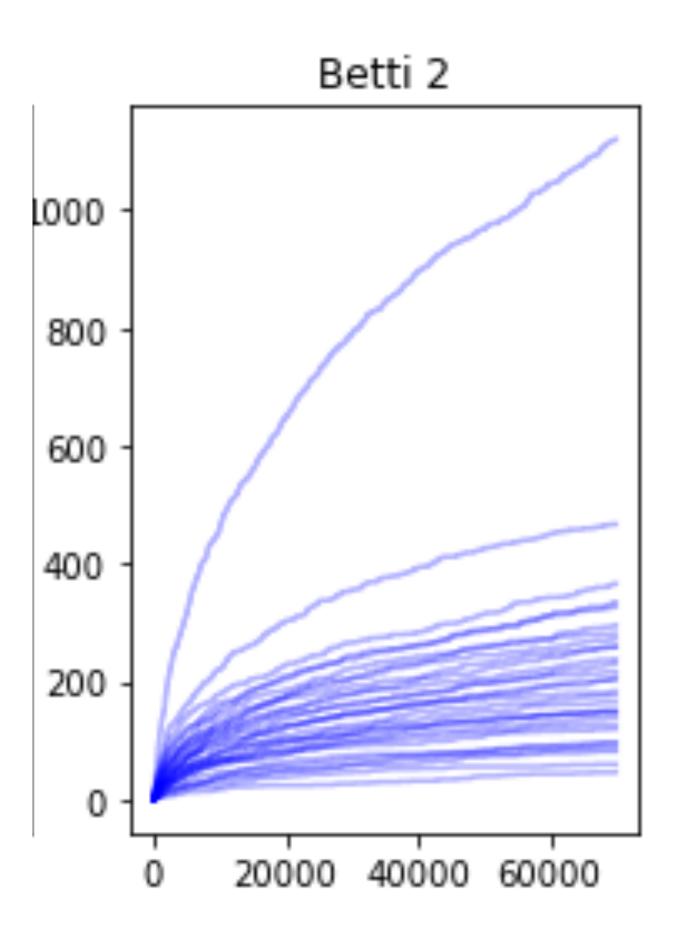
Different curves, different random seeds.
All curves have the same model parameters.

- increasing trend
- concave growth



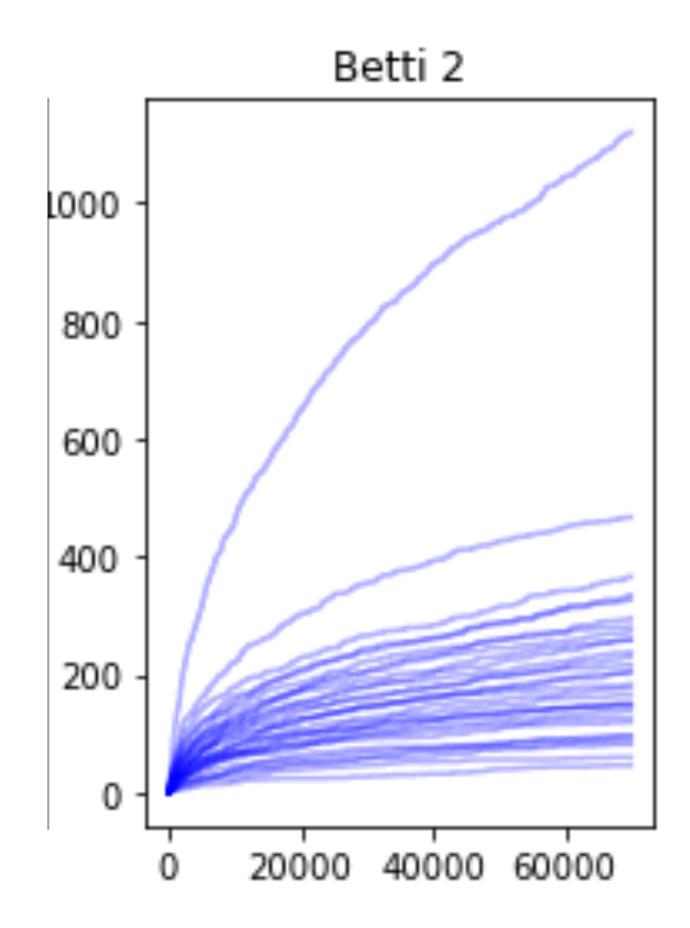
Different curves, different random seeds.
All curves have the same model parameters.

- increasing trend
- concave growth
- outlier

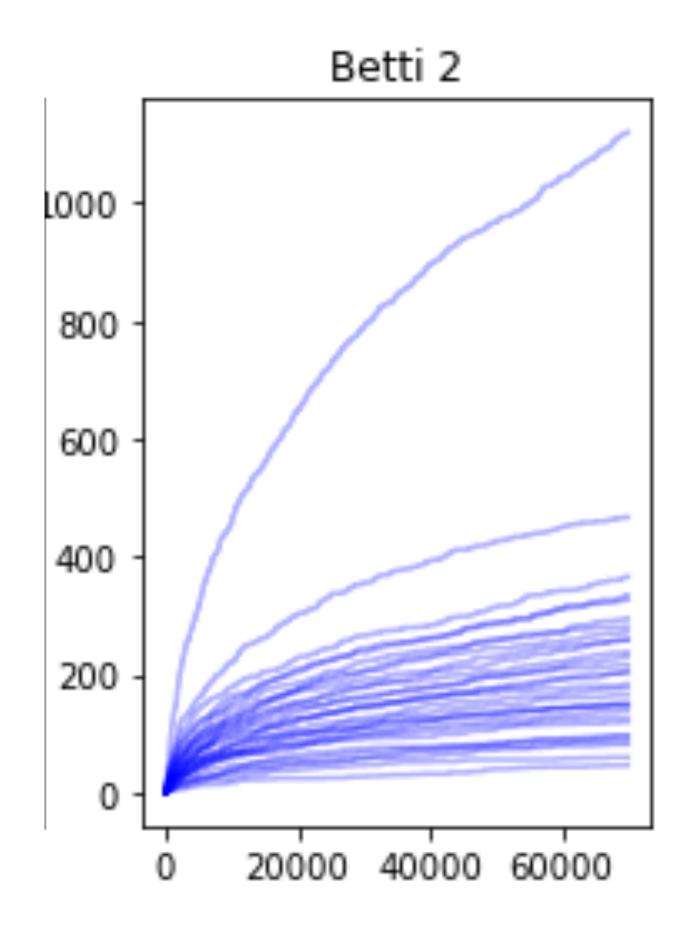


Different curves, different random seeds.
All curves have the same model parameters.

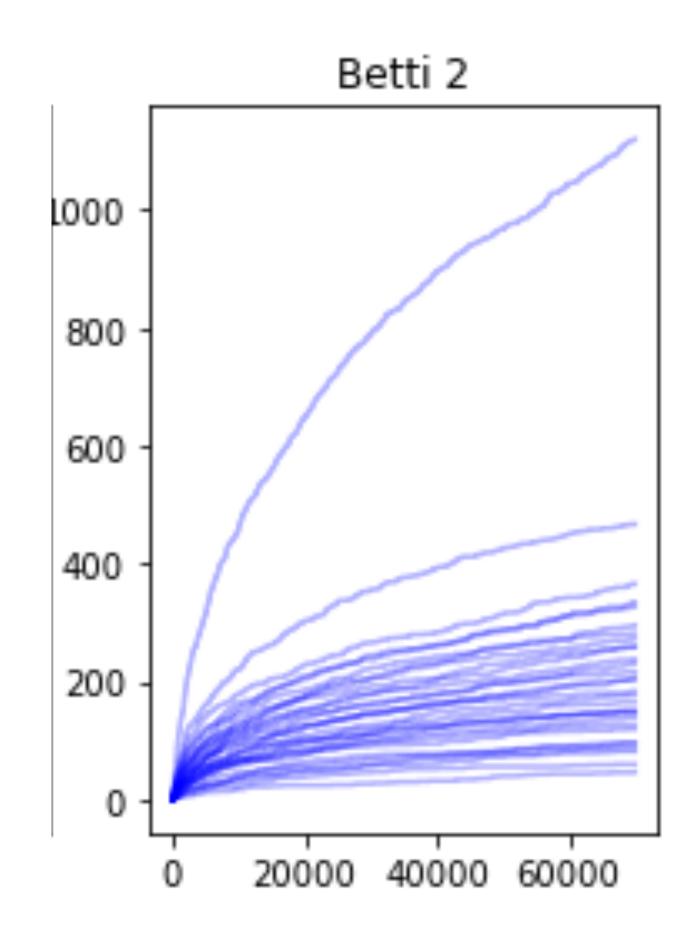
- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength.

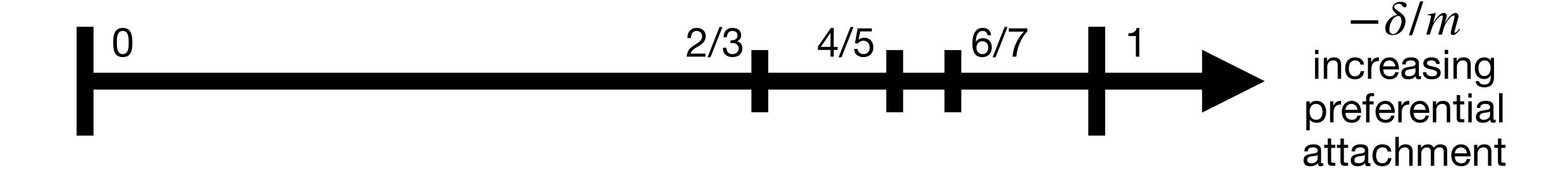


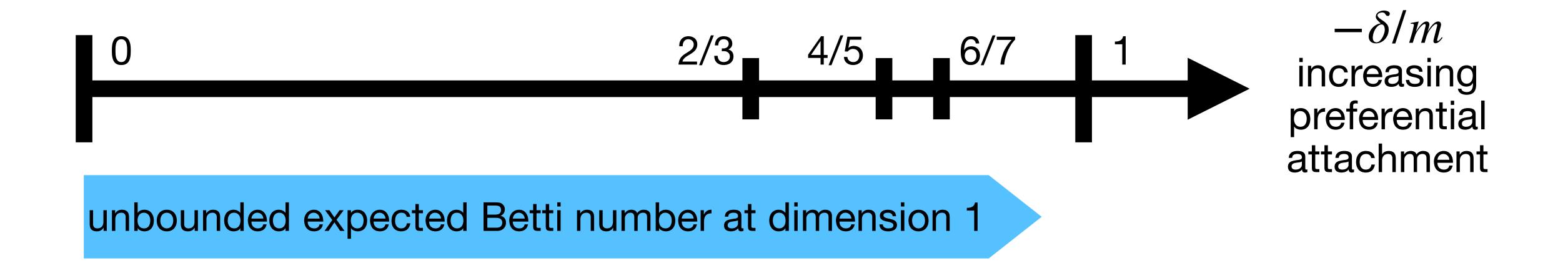
- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength.
 - If 1 4x < 0, then $E[\beta_2] \le C$.

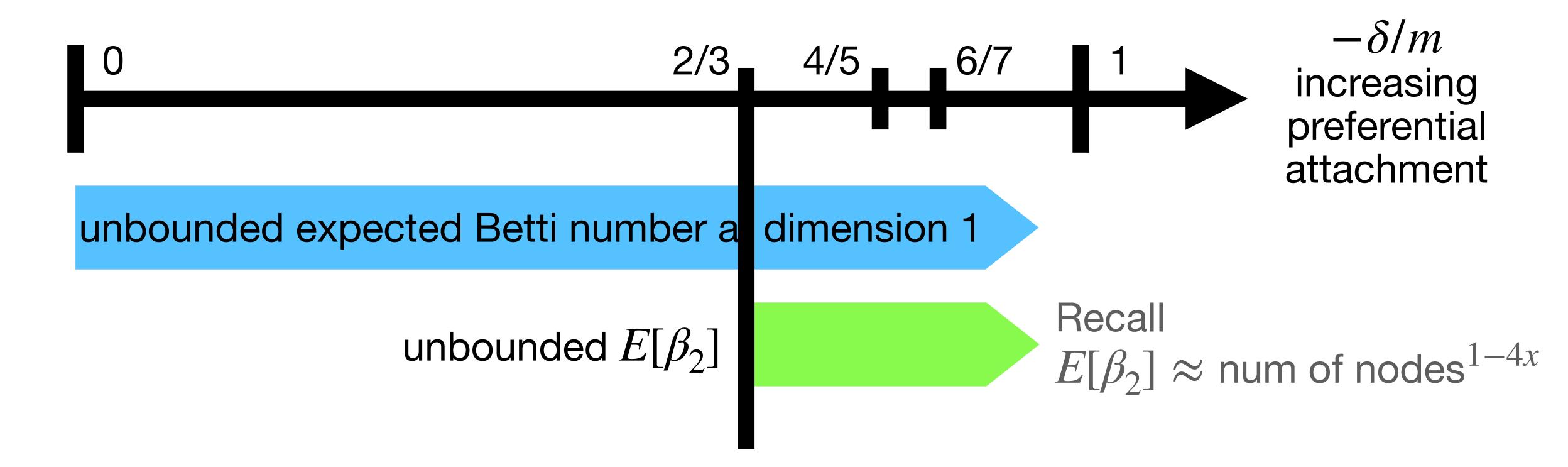


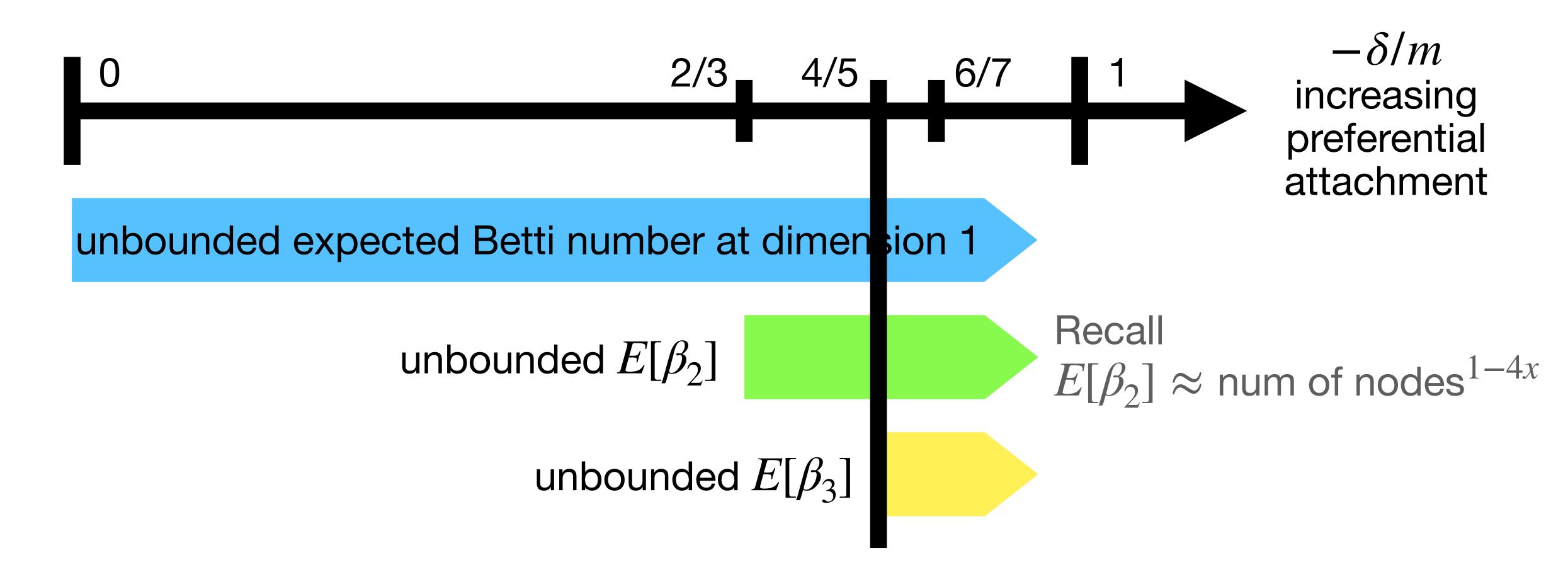
- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \leq E[\beta_q] \leq C(\text{num of nodes}^{1-2qx})$ for $q \geq 2$.

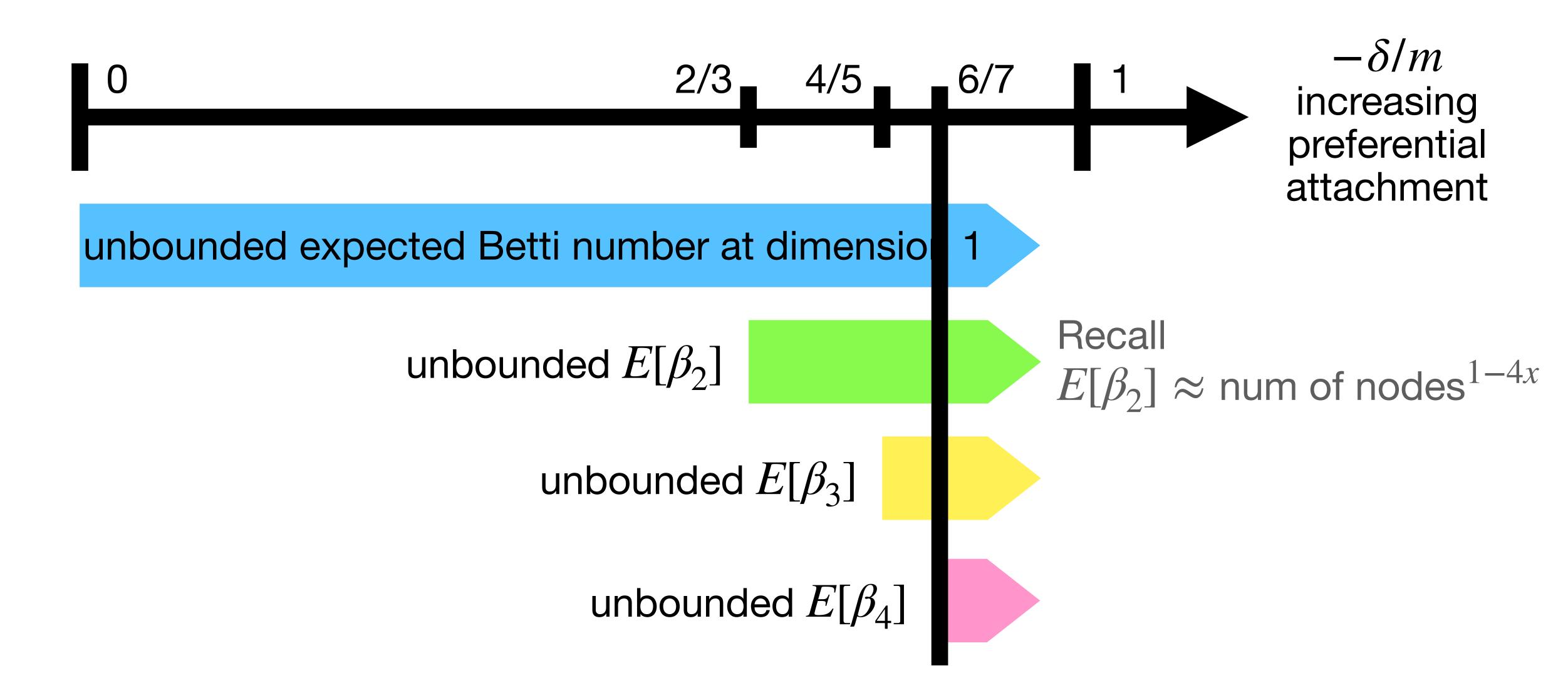


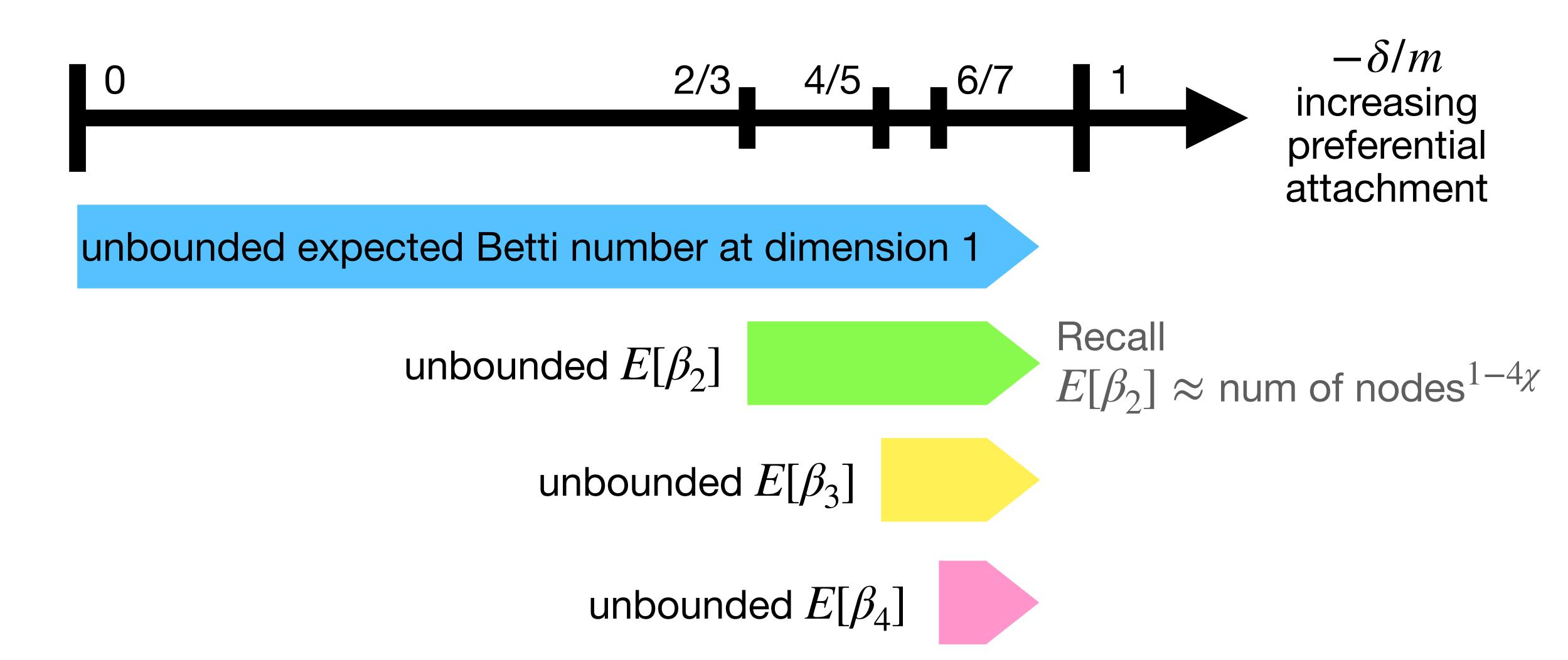






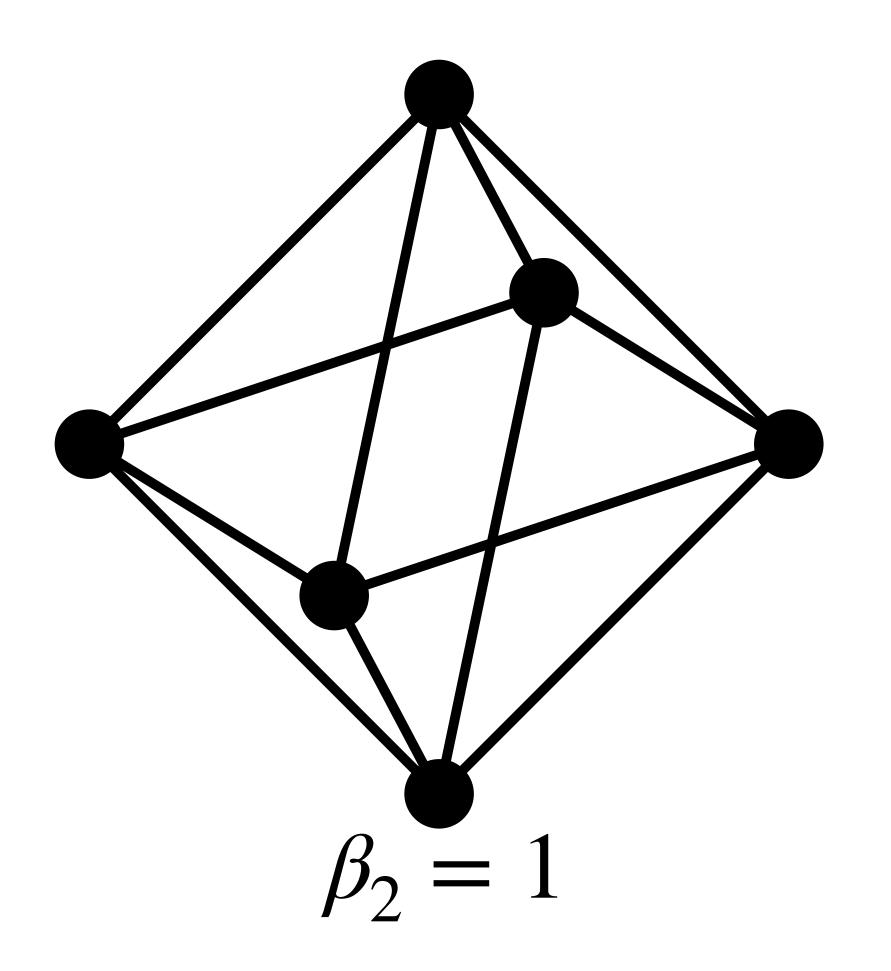




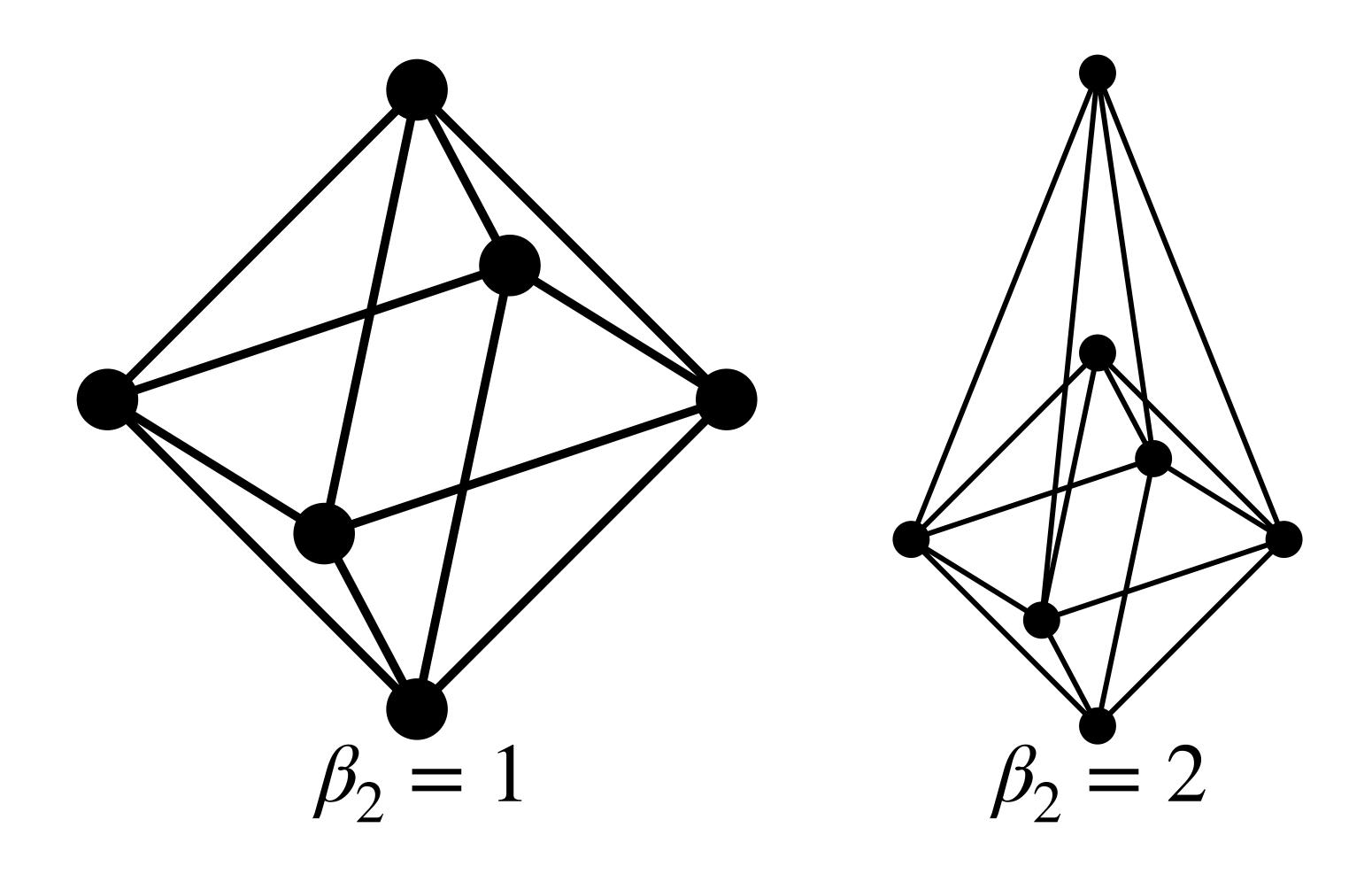


Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

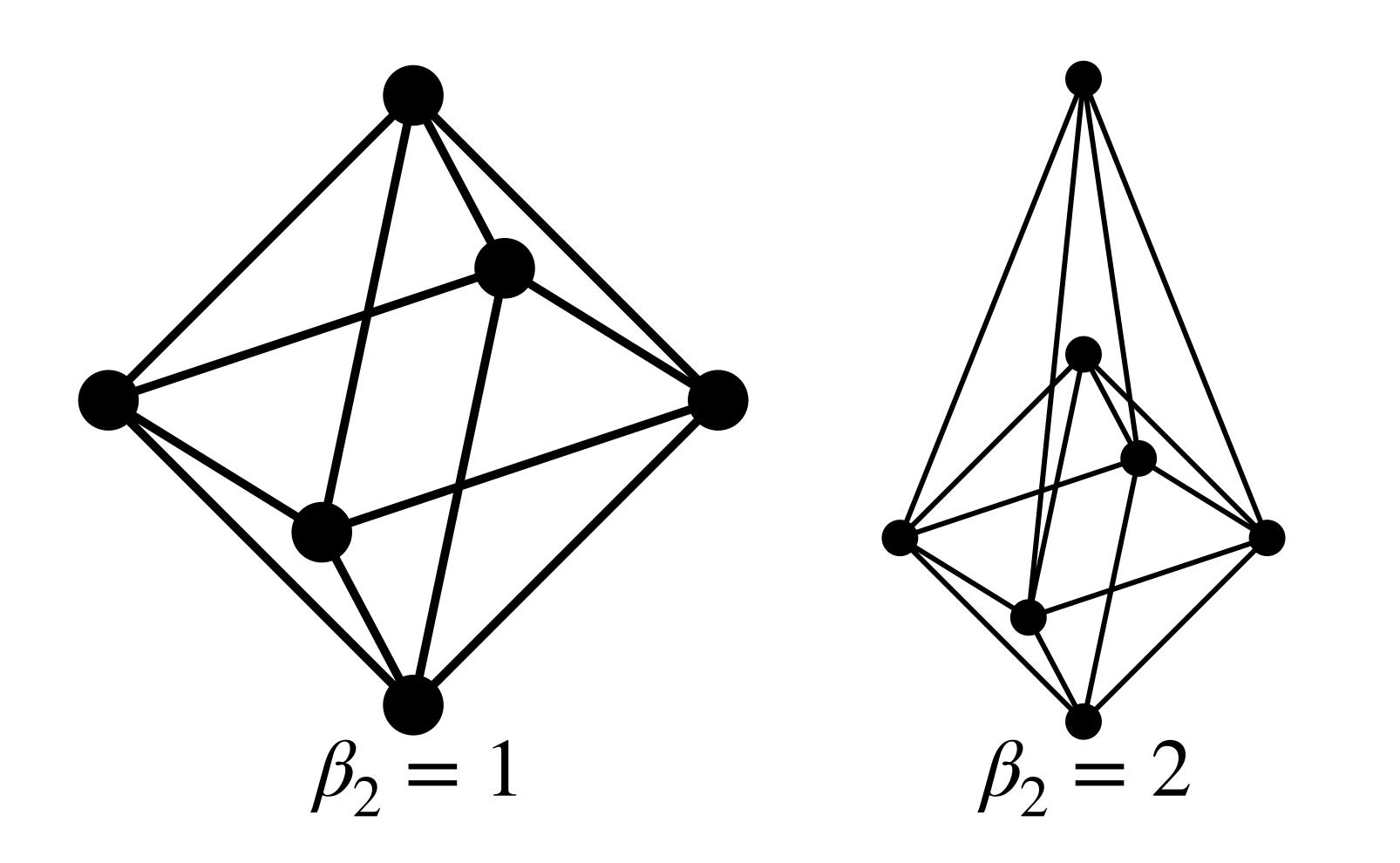
Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

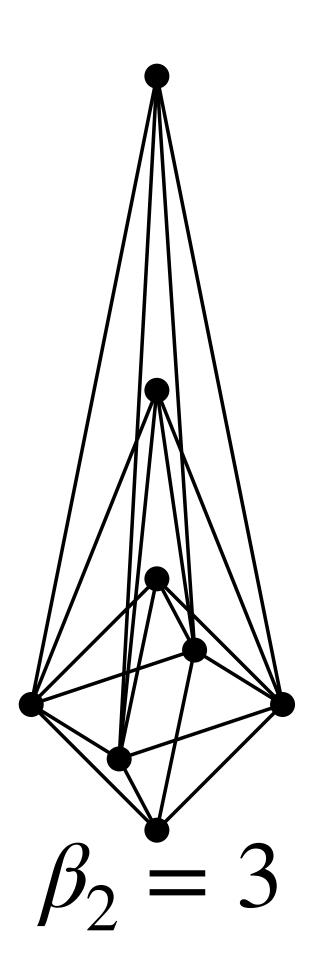


Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$



Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$





Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

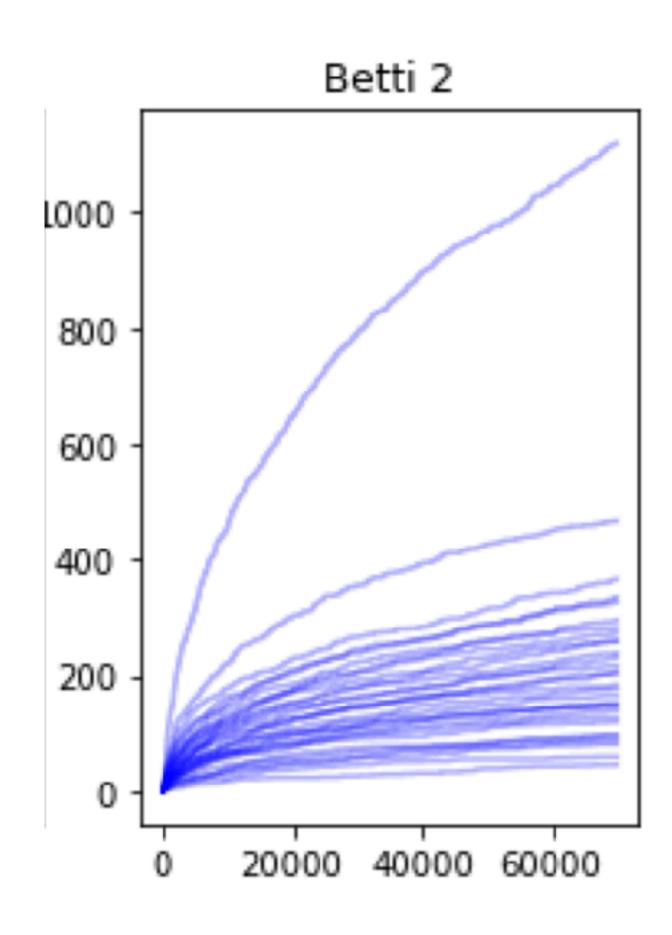
- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

•

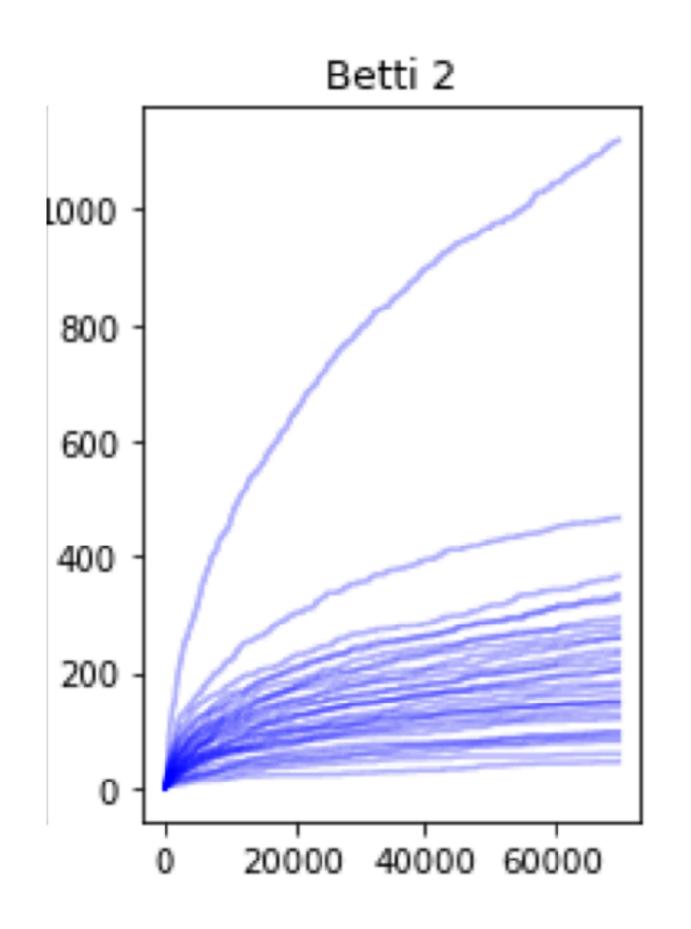
Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

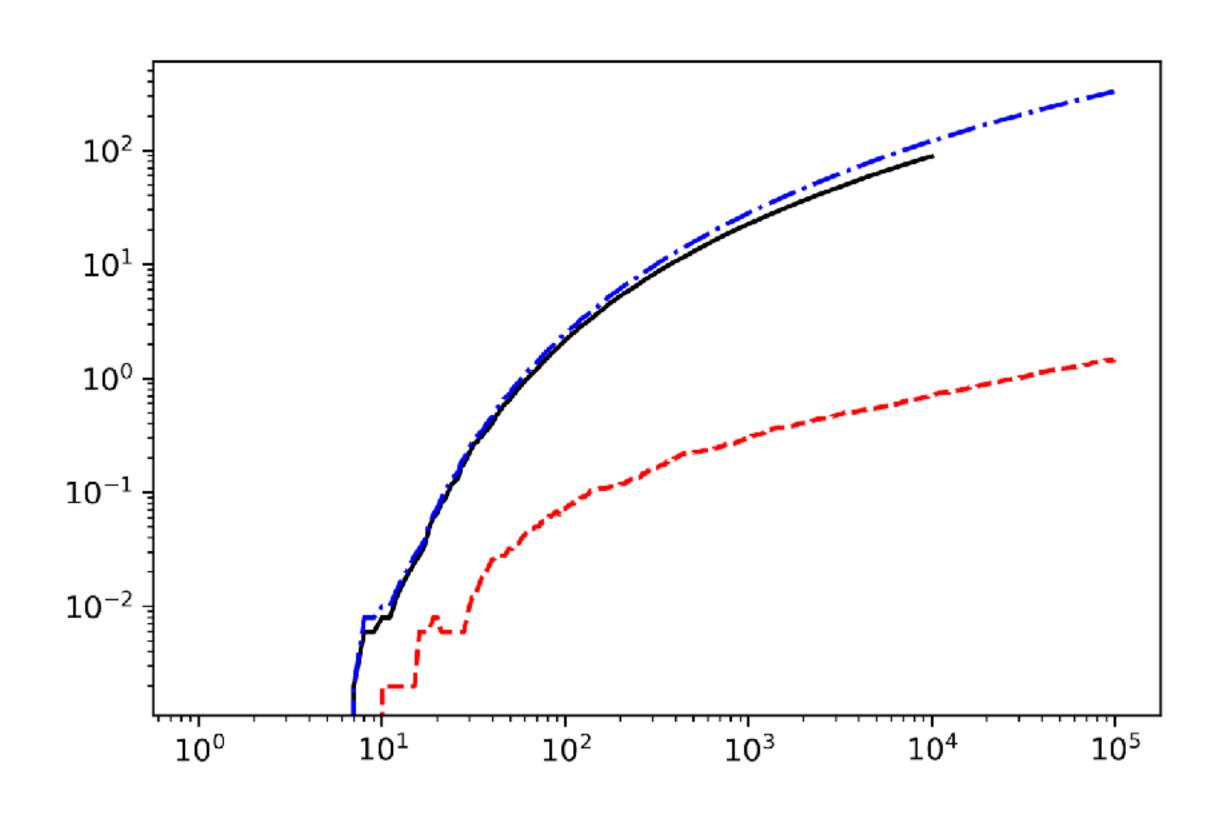
$E[\beta_2] \approx \text{num of nodes}^{1-4x}$



$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

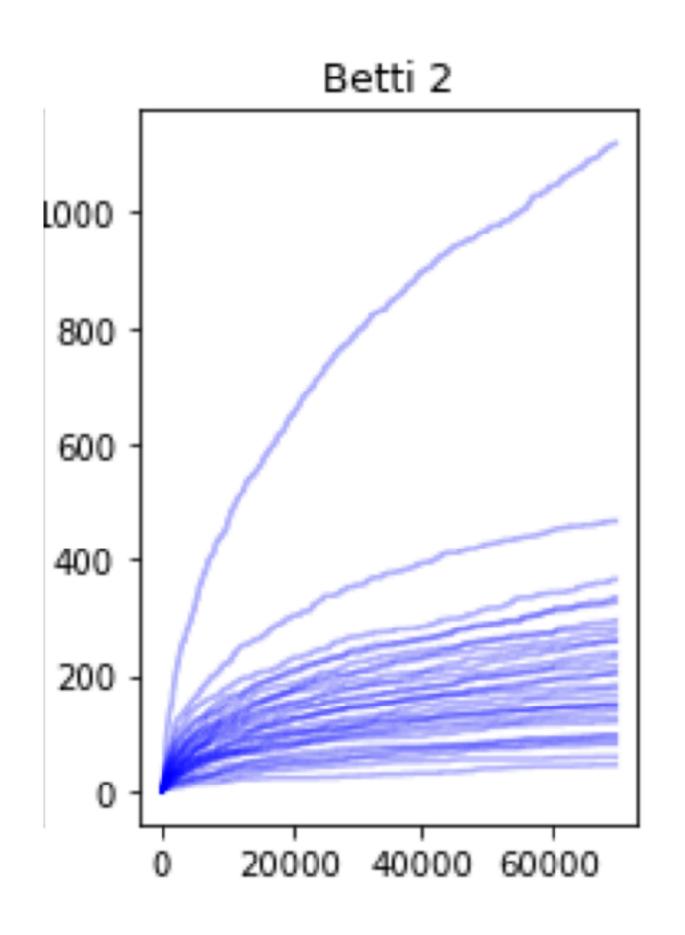
 $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

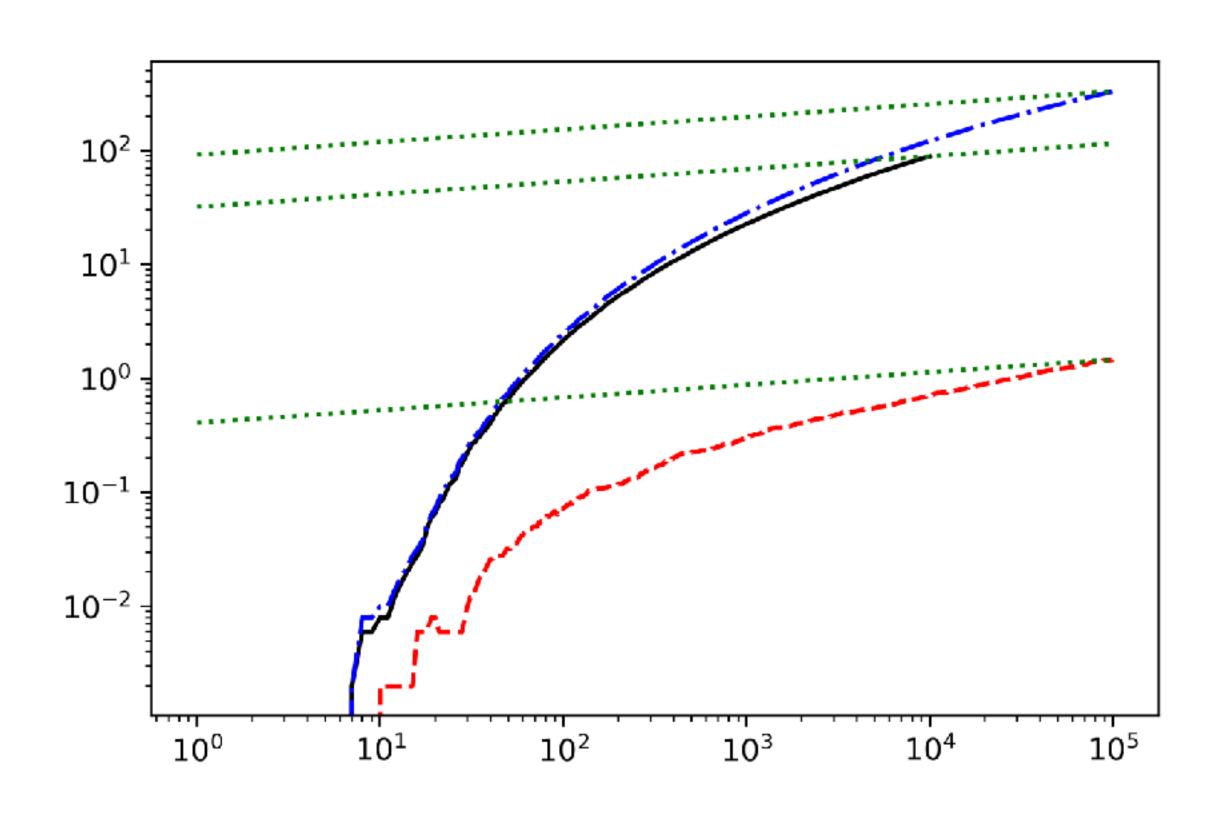




$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

 $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$





V. What lies ahead

order of magnitude of expected Betti numbers

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

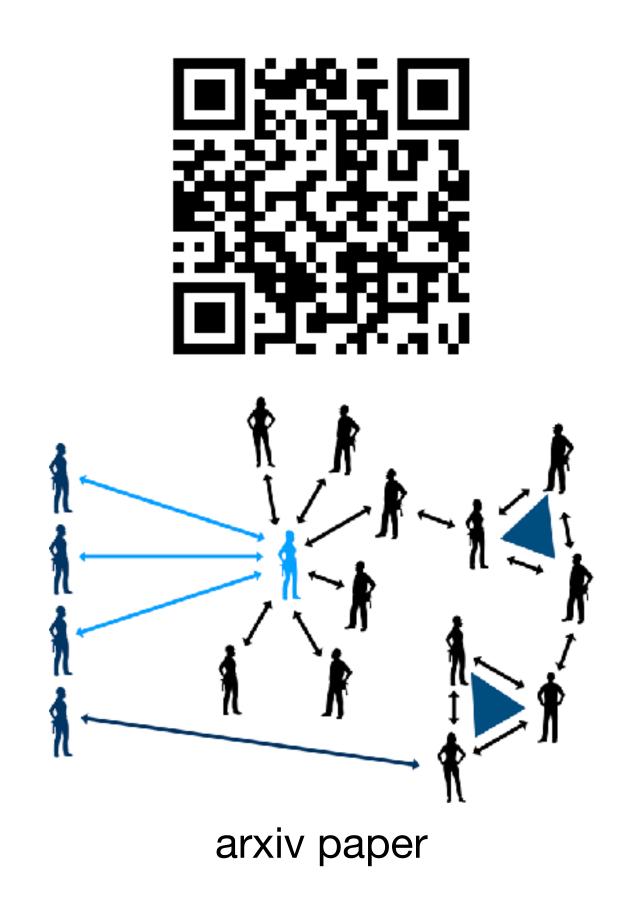
simplicial preferential attachment?

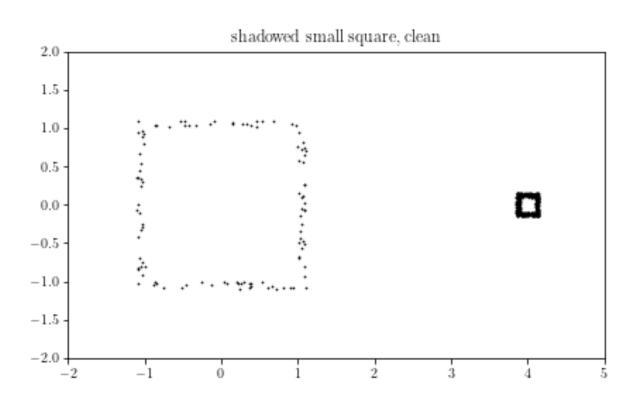
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> Cornell University

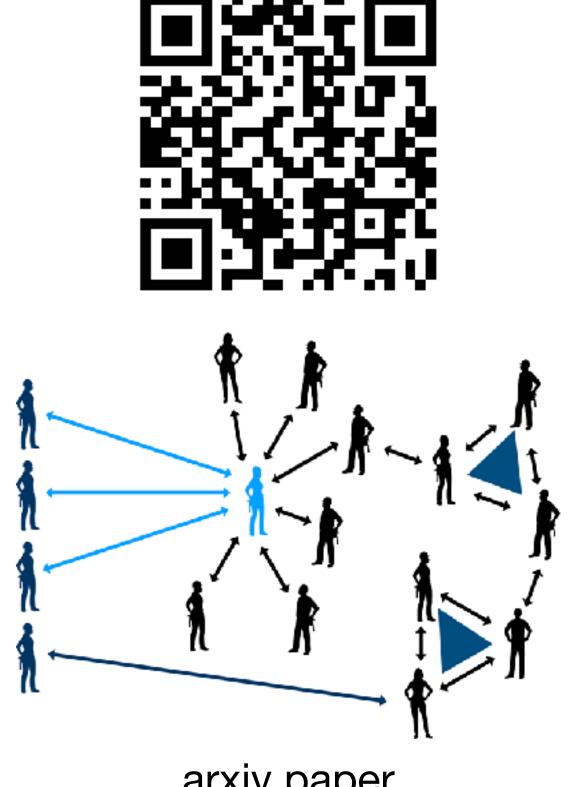




my video about small holes

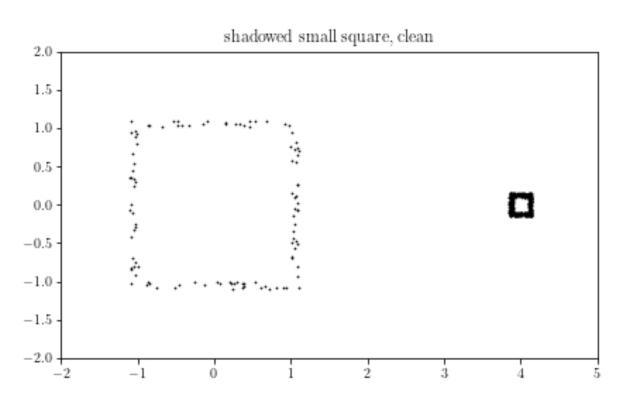
Thank you!

Chunyin Siu Cornell University



arxiv paper

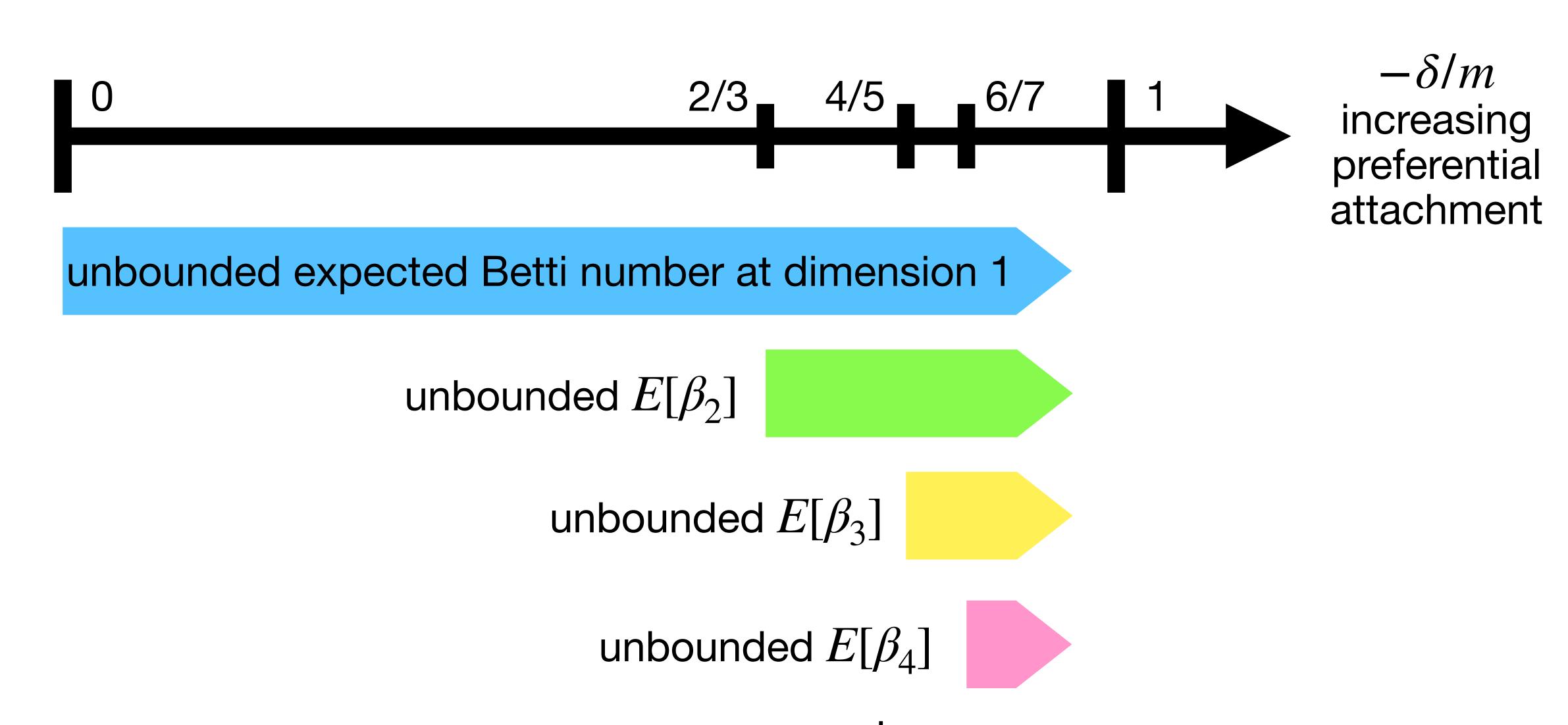
c-siu.github.io cs2323@cornell.edu



my video about small holes

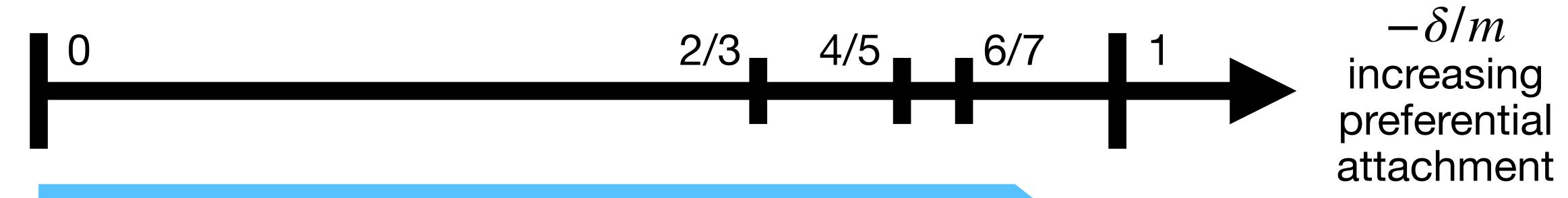
Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node



Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node



unbounded expected Betti number at dimension 1

$$\pi_1(X_\infty) \cong 0$$
, unbounded $E[\beta_2]$

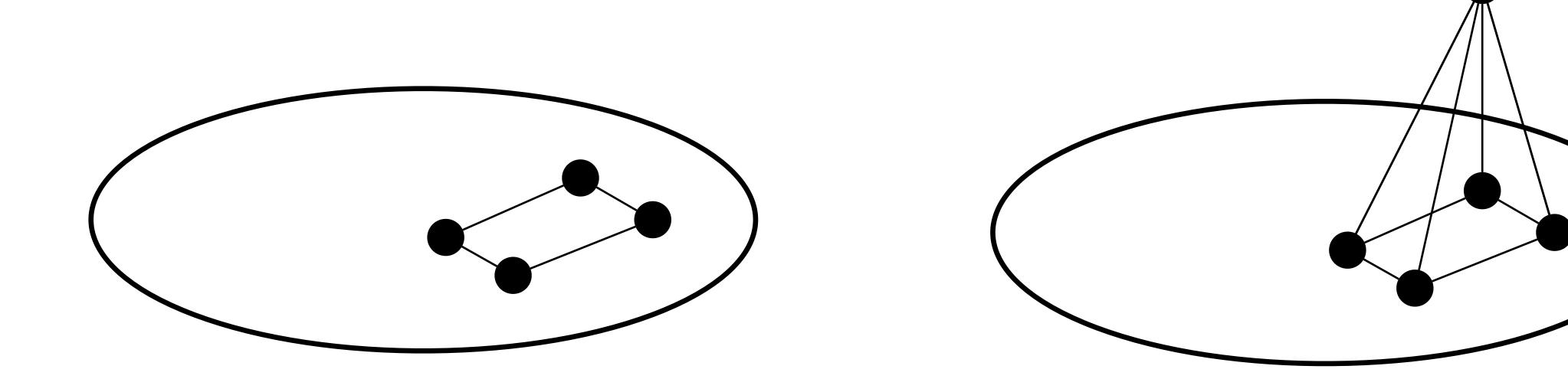
$$\pi_2(X_\infty) \cong 0$$
, unbounded $E[\beta_3]$

$$\pi_3(X_\infty) \cong 0$$
, unbounded $E[\beta_4]$

Need homological algebra to relate Betti numbers with counts

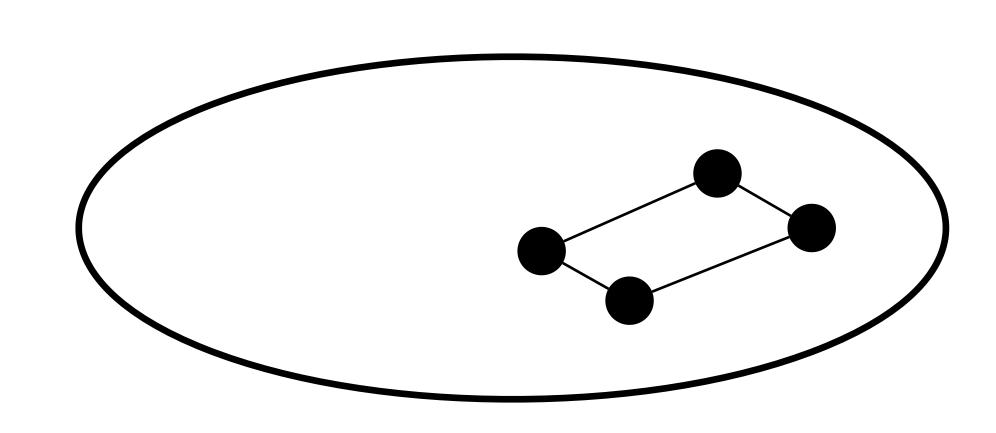
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

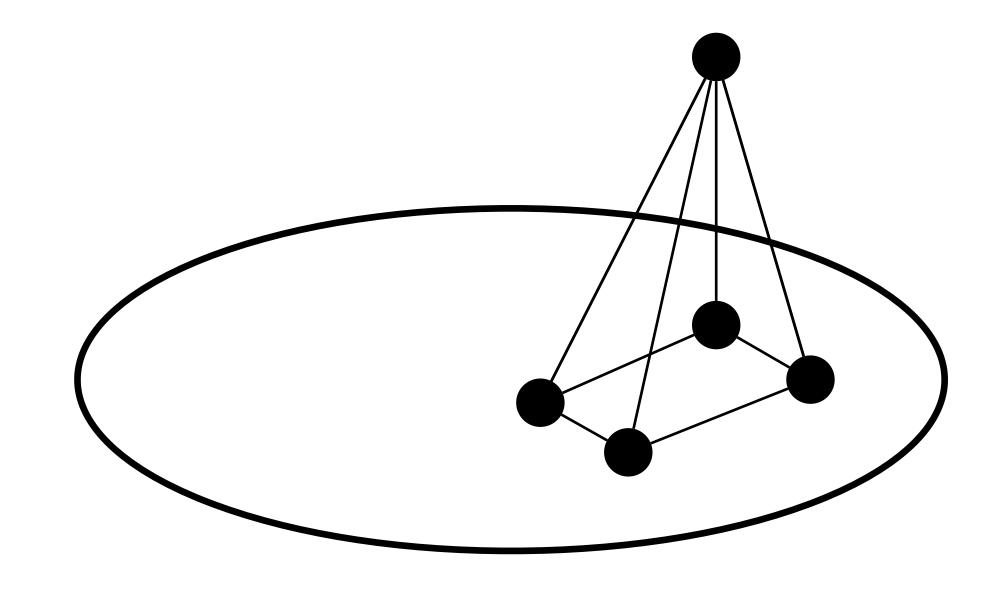
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone



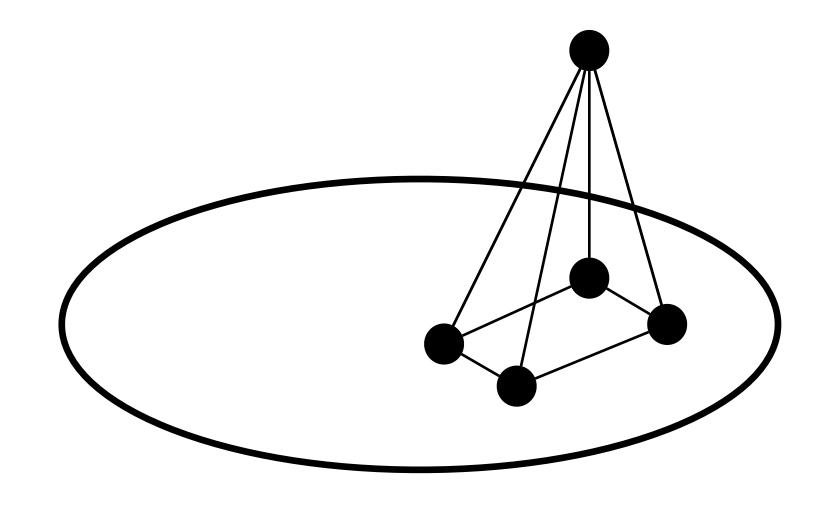
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

•
$$\beta_q(\text{new}) \le \beta_q(\text{old}) + \beta_{q-1}(\text{link})$$

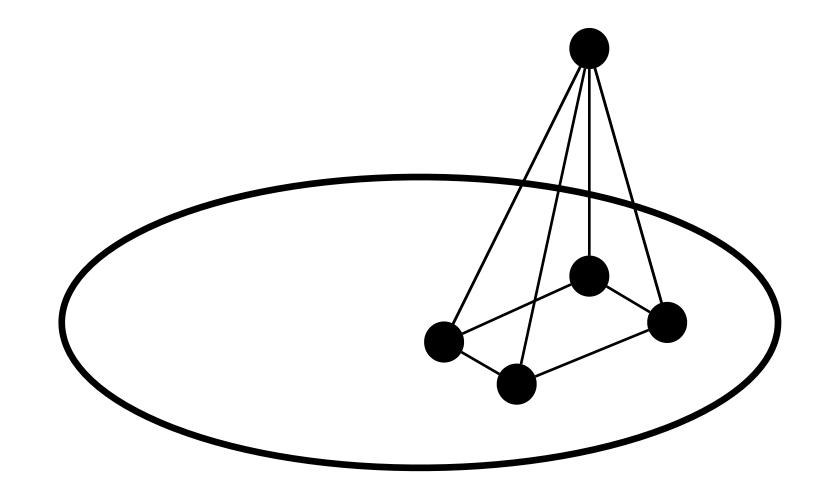




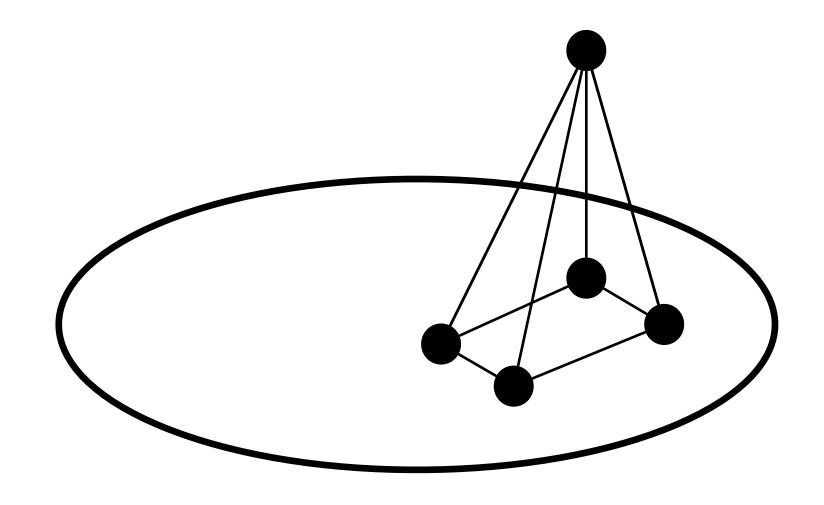
- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$



- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]



- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

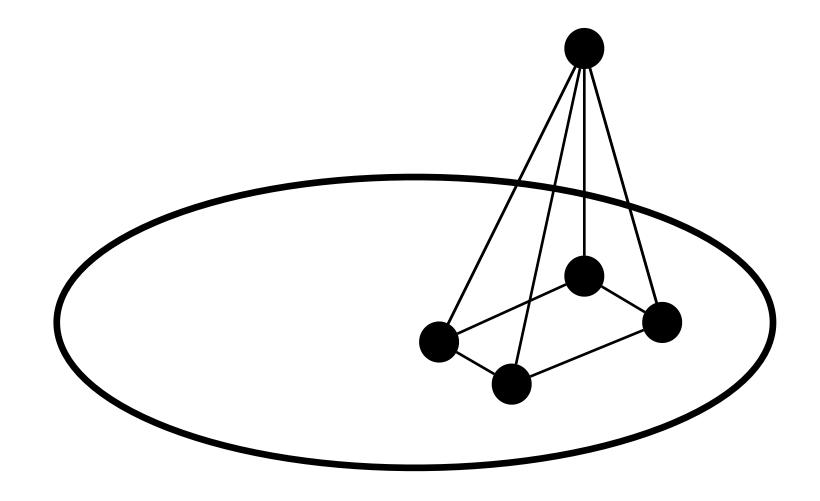


Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

$$\bullet \ 1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \leq \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \leq \beta_{q-1}(\operatorname{link})$$

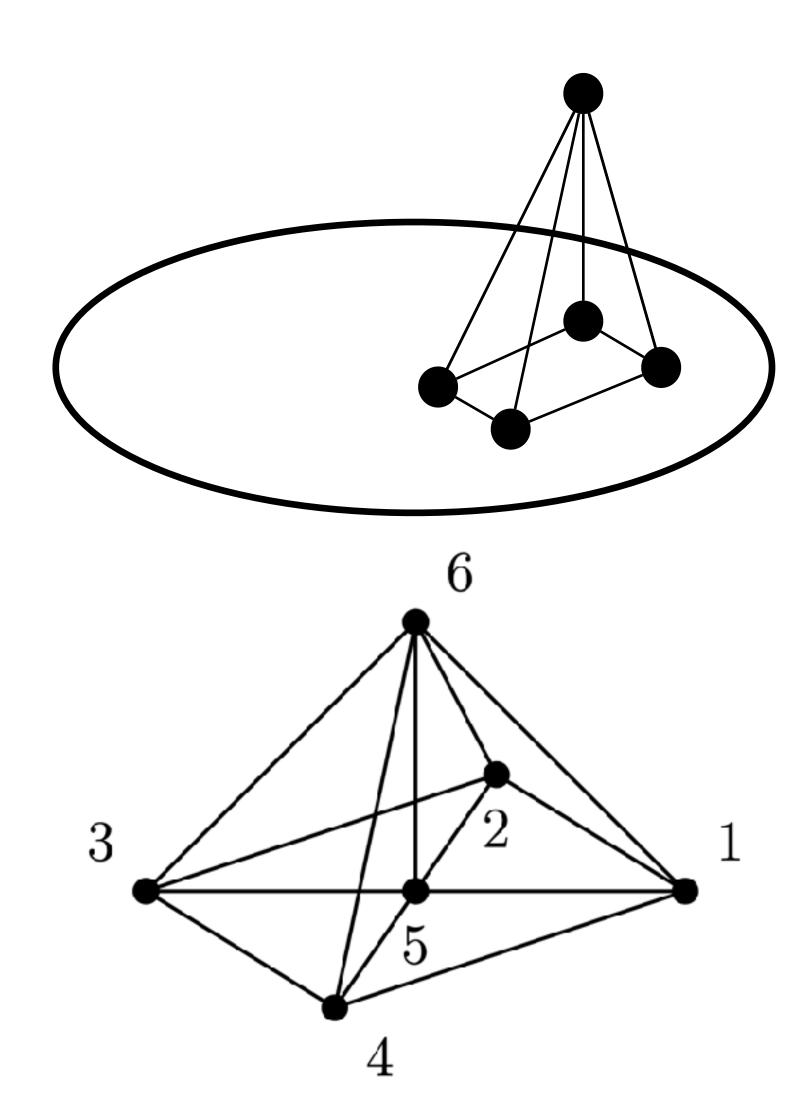


Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \le \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \le \beta_{q-1}(\operatorname{link})$$



Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

$$\bullet \ 1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \leq \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \leq \beta_{q-1}(\operatorname{link})$$

 Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

