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random fluctuation?
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I. A Probabilist’s Apology
Why Random Topology and What we Know





plots generated by Andrey Yao
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Random points don’t do that.
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• random geometric complexes


• Kahle 2011


• Kahle and Meckes 2013


• Yogeshwaran and Adler 2015
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• Hiraoka et al 2018
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II. Preferential Attachment
Beyond independence and homogeneity
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rich-get-richer effect
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What do we know?

• triangle counts and clustering coefficient [Bollobas and Ridden 2002, 
Prokhorenkova et al 2013]


• subgraph counts [Garavaglia and Steghuis 2019]


• and more…



Clique Complex
aka Flag Complex



III Topology of Preferential 
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Expected Betti Number E[βq]

•  
under mild assumptions


•  depends on  
the preferential attachment strength


• If , then .


•  
for .

c(num of nodes1−4x) ≤ E[β2] ≤ C(num of nodes1−4x)

x ∈ (0,1/2)

1 − 4x < 0 E[β2] ≤ C

c(num of nodes1−2qx) ≤ E[βq] ≤ C(num of nodes1−2qx)
q ≥ 2
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Phase transition

unbounded expected Betti number at dimension 1

0 12/3 4/5 6/7  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unbounded E[β3]

…

Recall 
E[β2] ≈ num of nodes1−4χ
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Subtleties

• Need homological algebra to relate Betti numbers with counts


• Identify the “square count” as the main term with minimal cycle results in [Gal 
2005] and [Kahle 2009]


• Generalize minimal cycle results in the language of homological algebra


• Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large 
class of subgraphs


•
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IV. Computation



Computational Challenges

• Ripser


• large graphs (1e4 ~ 1e5 nodes)


• large number of graphs (500 graphs)



V. What lies ahead
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order of magnitude of 
expected Betti numbers

parameter estimation?

simplicial preferential 
attachment?

homotopy connectedness 
of the infinite complex?

other non-homogeneous 
complexes?



What did we learn today?

• Random topology is cool.


• Preferential attachment graph has interesting topology.


• More interesting things are waiting to be discovered.
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