The Topology of Preferential Attachment

How Random Interaction Begets Holes

Chunyin Siu
Cornell University
cs2323@cornell.edu

The Topology of Preferential Attachment
 - Theory and computation
 How Random Interaction Begets Holes

Chunyin Siu
Cornell University
cs2323@cornell.edu

postdoc for 24/25

So, preferential attachment...

So, preferential attachment...

- Just a bouquet of circles?

(Stephen Coast
https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?
- -> random topology

So, preferential attachment...

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?
- $->$ random topology
- the random process of preferential attachment

Agenda

random topology

Agenda

Agenda

I. A Probabilist's Apology

Why Random Topology and What we Know

Size is Signal

Or is it?

Or is it?

Size is Signal?

Surprise Size is Signal.

Random points don't do that.

Signal is what is not random.

Signal is what is not random. So what is random?

What we know

[not meant to be complete]

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2023
- etc

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- random geometric complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2013
- etc

What we know
 [not meant to be complete]

- Erdos-Renyi clique complexes
- Kahle 2009, 2014
- Kahle and Meckes 2013
- Costa et al 2015
- Malen 2013
- etc
- random geometric complexes
- Kahle 2011
- Kahle and Meckes 2013
- Yogeshwaran and Adler 2015
- Bobrowski et al 2017
- Hiraoka et al 2018
- Thomas and Owada 2021a, b
- Owada and Wei 2022
- etc

II. Preferential Attachment

Beyond independence and homogeneity

Independent and identically distributed?

Independent and identically distributed?

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth
- outlier

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

Betti 2

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength.

Expected Betti Number $E\left[\beta_{q}\right]$

Betti 2

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength.
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.
- $c\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right) \leq E\left[\beta_{q}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$.

Betti 2

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1
unbounded $E\left[\beta_{2}\right]$
unbounded $E\left[\beta_{3}\right]$
Recall
$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$
unbounded $E\left[\beta_{4}\right]$

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ In practice???

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

IV. Computation

Computational Challenges

- Ripser
- large graphs (1e4 ~ $1 e 5$ nodes)
- large number of graphs (500 graphs)

V. What lies ahead

order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
parameter estimation?
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu cs2323@cornell.edu Cornell University

Thank you!

Chunyin Siu
 cs2323@cornell.edu

Cornell University

my video about small holes

