The Topology of Preferential Attachment

How Random Interaction Begets Holes

Chunyin Siu Cornell University cs2323@cornell.edu

The Topology of Preferential Attachment - Theory and Computation **How Random Interaction Begets Holes**

Chunyin Siu Cornell University cs2323@cornell.edu

postdoc for 24/25

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

• Just a bouquet of circles?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

—> random topology

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

- —> random topology
 - the random process of preferential attachment

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

random topology

random topology

preferential attachment

random topology

preferential attachment

I. A Probabilist's Apology Why Random Topology and What we Know

plots generated by Andrey Yao

Size is Signal

Or is it?

Or is it?

Size is Signal?

Surprise Size is Signal.

Random points don't do that.

Signal is what is not random.

Signal is what is not random. So what is random?

• Erdos-Renyi clique complexes

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2023
 - etc

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2013
 - etc

random geometric complexes

- Erdos-Renyi clique complexes
 - Kahle 2009, 2014
 - Kahle and Meckes 2013
 - Costa et al 2015
 - Malen 2013
 - etc

- random geometric complexes
 - Kahle 2011
 - Kahle and Meckes 2013
 - Yogeshwaran and Adler 2015
 - Bobrowski et al 2017
 - Hiraoka et al 2018
 - Thomas and Owada 2021a, b
 - Owada and Wei 2022
 - etc

II. Preferential Attachment Beyond independence and homogeneity

Independent and identically distributed?

Independent and identically distributed?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

P(attaching to v) \propto degree + δ = 4 + δ

P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ

Preferential Attachment [Albert and Barabasi 1999]

 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

increasing trend

- increasing trend
- concave growth •

- increasing trend
- concave growth
- outlier

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

• $x \in (0, 1/2)$ depends on the preferential attachment strength.

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

- $x \in (0, 1/2)$ depends on the preferential attachment strength.
- If 1 4x < 0, then $E[\beta_2] \le C$.

- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on the preferential attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for $q \ge 2$.

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts •
- 2005] and [Kahle 2009]

Identify the "square count" as the main term with minimal cycle results in [Gal

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

IV. Computation

Computational Challenges

- Ripser
- large graphs (1e4 ~ 1e5 nodes)
- large number of graphs (500 graphs)

V. What lies ahead

order of magnitude of expected Betti numbers

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> **Cornell University**

my video about small holes

Thank you!Chunyin Siucs2323@cornell.eduCornell University

arxiv paper

my video about small holes