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I. Topological Data Analysis



Points



plots generated by Andrey Yao
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Networks and Complexes

• Co-occurence complex in Math research paper [Salikov et al, 2018]
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Gap in Understanding

Schur’s 
lemma

Stone-Von 
Neumann theorem

Spectral 
theorem Boltzmann 

equation
Alternate interior 
angles theorem

Vlasov 
equation

Inverse function 
theorem

Arzela-Ascoli 
theorem



Benchmark of Comparison?



II. Preferential Attachment
Towards a random model
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Preferential Attachment
[Albert and Barabasi 1999]
P(attaching to v)  degree + a tuning parameter  ∝ δ

rich-get-richer effect
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What do we know?

• triangle counts and clustering coefficient [Bollobas and Ridden 2002, 
Prokhorenkova et al 2013]


• subgraph counts [Garavaglia and Steghuis 2019]


• and more…



Clique Complex
aka Flag Complex
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Expected Betti Number E[βq]

•  
under mild assumptions


•  depends on  
the preferential attachment strength


• If , then .


•  
for .

c(num of nodes1−4x) ≤ E[β2] ≤ C(num of nodes1−4x)

x ∈ (0,1/2)

1 − 4x < 0 E[β2] ≤ C

c(num of nodes1−2qx) ≤ E[βq] ≤ C(num of nodes1−2qx)
q ≥ 2
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Theorem:  
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order of magnitude of 
expected Betti numbers

parameter estimation?

simplicial preferential 
attachment?

homotopy connectedness 
of the infinite complex?

other non-homogeneous 
complexes?



What did we learn today?

• Random topology is cool.


• Preferential attachment graph has interesting topology.


• More interesting things are waiting to be discovered.
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tight?
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