The Topology of Preferential Attachment The Asymptotics of the Expected Betti Numbers of Preferential

The Asymptotics of the Expect Attachment Clique Complexes

Chunyin Siu Cornell University cs2323@cornell.edu

So, preferential attachment...

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

So, preferential attachment...

• Just a bouquet of circles?

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

Topological Data Analysis

random topology

preferential attachment

random topology

preferential attachment

our result

I. Topological Data Analysis

Points

plots generated by Andrey Yao

Networks and Complexes

Networks and Complexes

Co-occurence complex in Math research paper [Salikov et al, 2018]

Gap in Understanding

Benchmark of Comparison?

II. Preferential Attachment Towards a random model

(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

P(attaching to v) \propto degree + δ = 4 + δ

P(attaching to v) \propto degree + a tuning parameter δ

P(attaching to v) \propto degree + a tuning parameter δ

 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

increasing trend

- increasing trend
- concave growth •

- increasing trend
- concave growth
- outlier

Expected Betti Number $E[\beta_a]$

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

• $x \in (0, 1/2)$ depends on the preferential attachment strength.

Expected Betti Number $E[\beta_a]$

• $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions

- $x \in (0, 1/2)$ depends on the preferential attachment strength.
- If 1 4x < 0, then $E[\beta_2] \le C$.

Expected Betti Number $E[\beta_a]$

- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$ under mild assumptions
 - $x \in (0, 1/2)$ depends on the preferential attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \le E[\beta_q] \le C(\text{num of nodes}^{1-2qx})$ for $q \ge 2$.

20000

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

> $-\delta/m$ increasing preferential attachment

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

 $-\delta/m$

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Recall P(attaching to v) \propto degree + δ m = number of edges per new node

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts •
- 2005] and [Kahle 2009]

Identify the "square count" as the main term with minimal cycle results in [Gal

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

$E[\beta_2] \approx \text{num of nodes}^{1-4x}$ $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

V. What lies ahead

order of magnitude of expected Betti numbers

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> **Cornell University**

arxiv paper

my video about small holes

Thank you! **Chunyin Siu Cornell University**

arxiv paper

<u>c-siu.github.io</u> cs2323@cornell.edu

my video about small holes

 $-\delta/m$

unbounded expected Betti number at dimension 1

$\pi_1(X_\infty) \cong 0$, unbounded $E[\beta_2]$

 $\pi_2(X_{\infty}) \cong 0$, unbounded $E[\beta_3]$

 $\pi_3(X_\infty) \cong 0$, unbounded $E[\beta_4]$

tight?

Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone
 - $\beta_q(\text{new}) \le \beta_q(\text{old}) + \beta_{q-1}(\text{link})$

• Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

- Need homological algebra to relate Betti numbers with lacksquarecounts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra •

- Need homological algebra to relate Betti numbers with ulletcounts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal • cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

 $-\beta_q(\text{old}) \le \beta_{q-1}(\text{link})$

- Need homological algebra to relate Betti numbers with counts
 - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

- Need homological algebra to relate Betti numbers with counts
 - $\bullet \ \beta_q(\text{new}) \beta_q(\text{old}) \leq \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

•
$$1 - \beta_q(\text{link}, S^{q-1}) - \beta_q(\text{link}) \le \beta_q(\text{new})$$
 -

 Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

4

