The Topology of Preferential Attachment

The Asymptotics of the Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
Cornell University
cs2323@cornell.edu

So, preferential attachment...

So, preferential attachment...

- Just a bouquet of circles?

Agenda

Topological Data Analysis

Agenda

Agenda

I. Topological Data Analysis

Points

Networks and Complexes

Networks and Complexes

- Co-occurence complex in Math research paper [Salikov et al, 2018]

$$
\ominus_{\ominus}^{\ominus}
$$

Gap in Understanding

Benchmark of Comparison?

II. Preferential Attachment

Towards a random model

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

$\mathrm{P}($ attaching to v$) \propto$ degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]

Preferential Attachment

[Albert and Barabasi 1999]

What do we know?

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

What do we know?

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

Clique Complex

aka Flag Complex

III Topology of Preferential Attachment

My Lovely Collaborators

Christina Lee Yu

Gennady Samorodnitsky

Rongyi He (Caroline)

Expected Betti Number $E\left[\beta_{q}\right]$

Expected Betti Number $E\left[\beta_{q}\right]$

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth

Different curves, different random seeds. All curves have the same model parameters.

Expected Betti Number $E\left[\beta_{q}\right]$

- increasing trend
- concave growth
- outlier

Different curves, different random seeds.

Expected Betti Number $E\left[\beta_{q}\right]$

Betti 2

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength.

Expected Betti Number $E\left[\beta_{q}\right]$

Betti 2

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength.
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.

Expected Betti Number $E\left[\beta_{q}\right]$

- $c\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right) \leq E\left[\beta_{2}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-4 x}\right)$ under mild assumptions
- $x \in(0,1 / 2)$ depends on the preferential attachment strength
- If $1-4 x<0$, then $E\left[\beta_{2}\right] \leq C$.
- $c\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right) \leq E\left[\beta_{q}\right] \leq C\left(\right.$ num of nodes $\left.{ }^{1-2 q x}\right)$ for $q \geq 2$.

Betti 2

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

Recall

Phase transition

$\mathrm{P}($ attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v) \propto degree $+\delta$
$\mathrm{m}=$ number of edges per new node

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1
unbounded $E\left[\beta_{2}\right]$
unbounded $E\left[\beta_{3}\right]$
Recall
$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$
unbounded $E\left[\beta_{4}\right]$

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ Proof?

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Proof of $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

Theorem: $E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$ In practice???

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

$E\left[\beta_{2}\right] \approx$ num of nodes ${ }^{1-4 x}$

$\log E\left[\beta_{2}\right] \approx(1-4 x) \log ($ num of nodes $)$

Betti 2

V. What lies ahead

order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
parameter estimation?
homotopy connectedness
of the infinite complex?
order of magnitude of expected Betti numbers
simplicial preferential attachment?
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu cs2323@cornell.edu Cornell University

Thank you!

Chunyin Siu
 Cornell University

c-siu.github.io cs2323@cornell.edu

my video about small holes

Recall

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

unbounded $E\left[\beta_{2}\right]$
unbounded $E\left[\beta_{3}\right]$
unbounded $E\left[\beta_{4}\right]$

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

$$
\begin{aligned}
& \pi_{1}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{2}\right] \\
& \pi_{2}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{3}\right] \\
& \\
& \quad \pi_{3}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{4}\right]
\end{aligned}
$$

Phase transition

P (attaching to v$) \propto$ degree $+\delta$
$\mathrm{m}=$ number of edges per new node

$-\delta / m$
increasing preferential attachment
unbounded expected Betti number at dimension 1

$$
\begin{aligned}
& \pi_{1}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{2}\right] \\
& \quad \pi_{2}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{3}\right] \\
& \quad \pi_{3}\left(X_{\infty}\right) \cong 0, \text { unbounded } E\left[\beta_{4}\right]
\end{aligned}
$$

Subtleties

- Need homological algebra to relate Betti numbers with counts

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone

Subtleties

- Need homological algebra to relate Betti numbers with counts
- adding a vertex = construct mapping cone
- $\beta_{q}($ new $) \leq \beta_{q}($ old $)+\beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new $)-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal
 cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}($ link $)$

Subtleties

- Need homological algebra to relate Betti numbers with counts
- β_{q} (new) $-\beta_{q}$ (old) $\leq \beta_{q-1}$ (link)
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra
- $1-\beta_{q}\left(\right.$ link, $\left.S^{q-1}\right)-\beta_{q}($ link $) \leq \beta_{q}($ new $)-\beta_{q}($ old $) \leq \beta_{q-1}$ (link)
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

