The Topology of Preferential Attachment

The Asymptotics of the Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
Cornell University
cs2323@cornell.edu

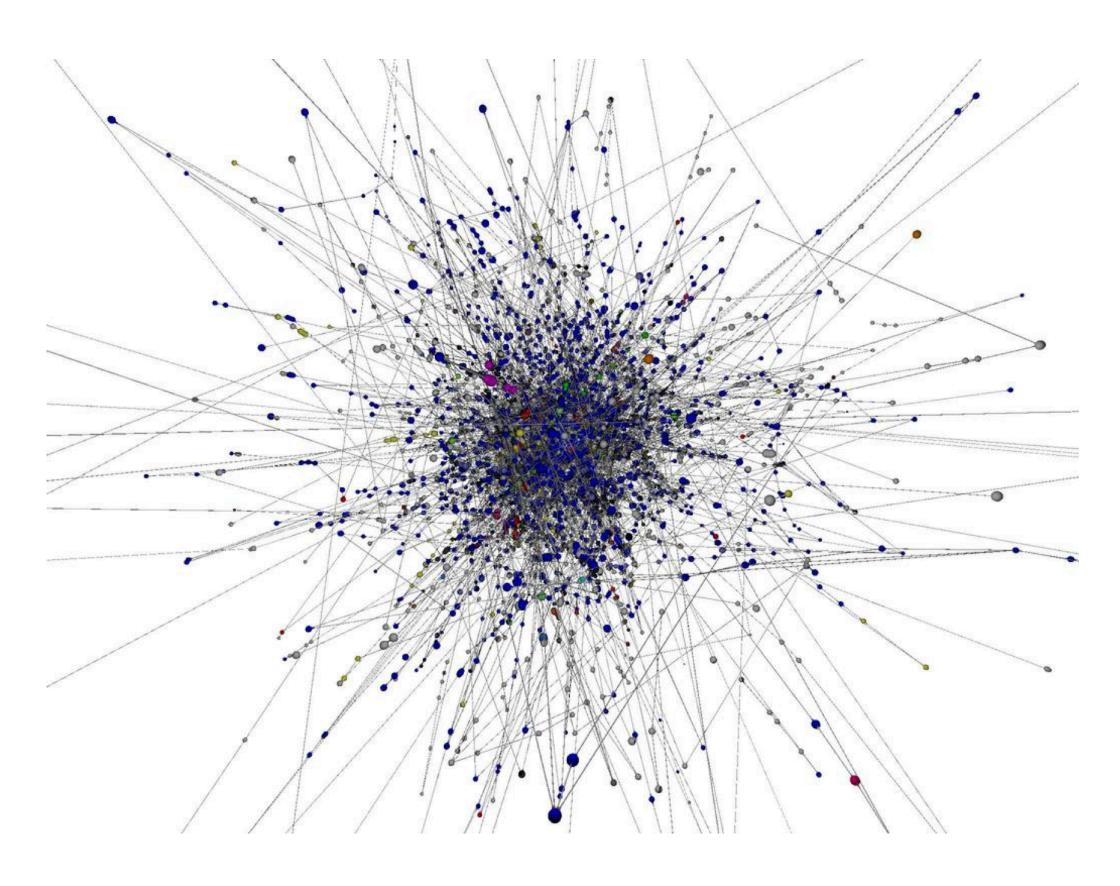
Waving through the window

postdoc for 24/25

The Topology of Preferential Attachment

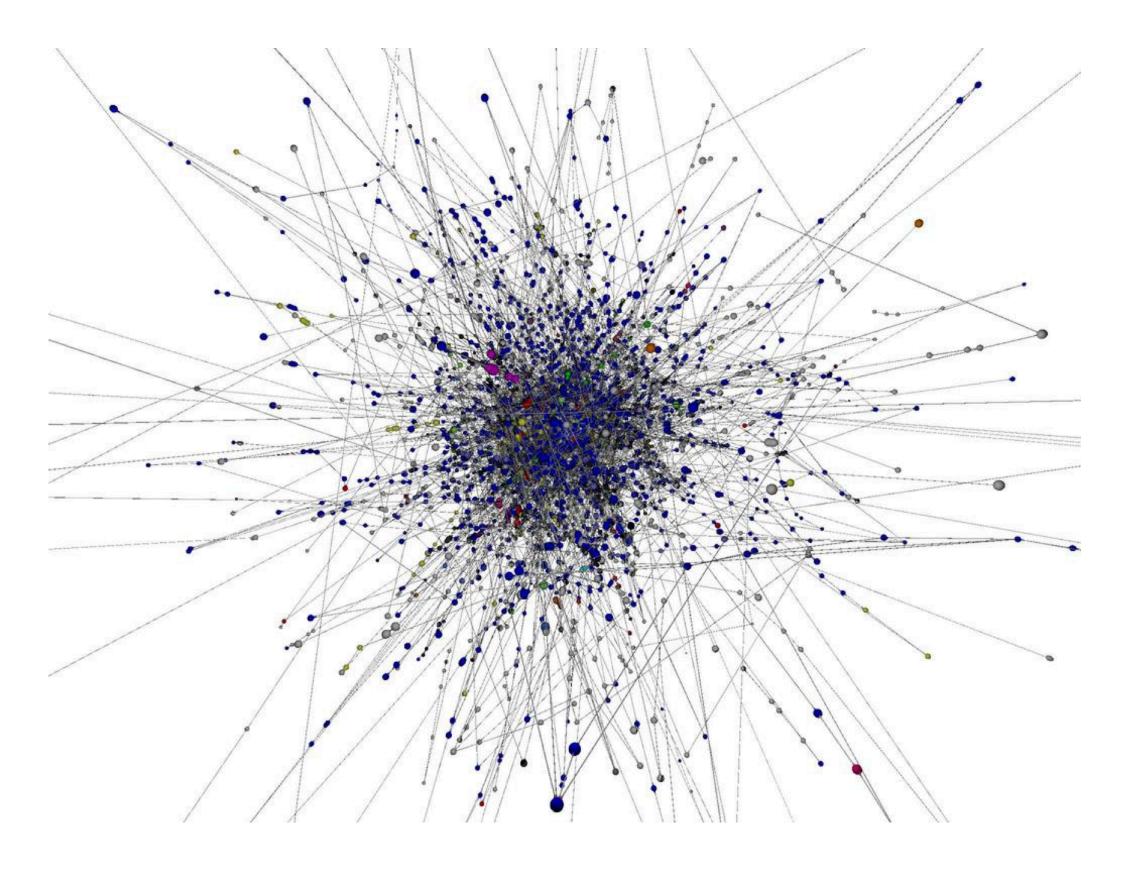
The Asymptotics of the Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
Cornell University
cs2323@cornell.edu



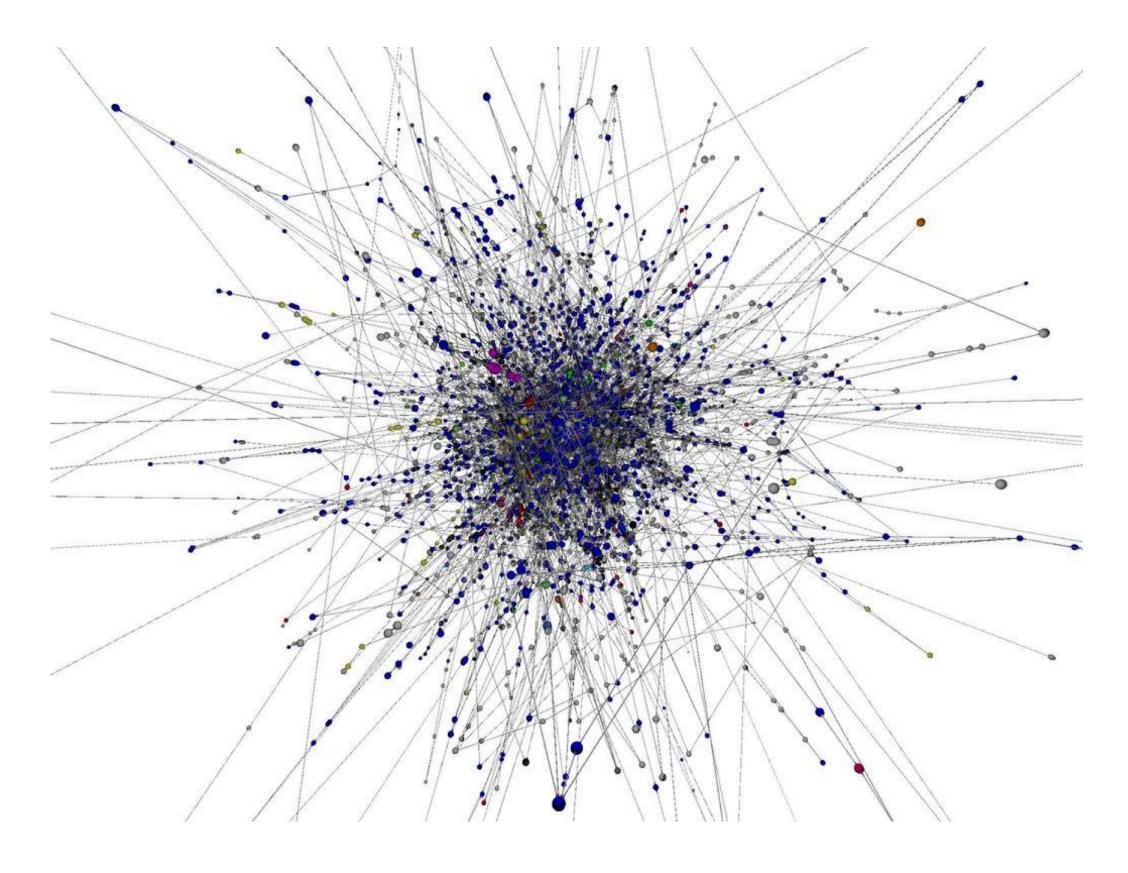
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

Just a bouquet of circles?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

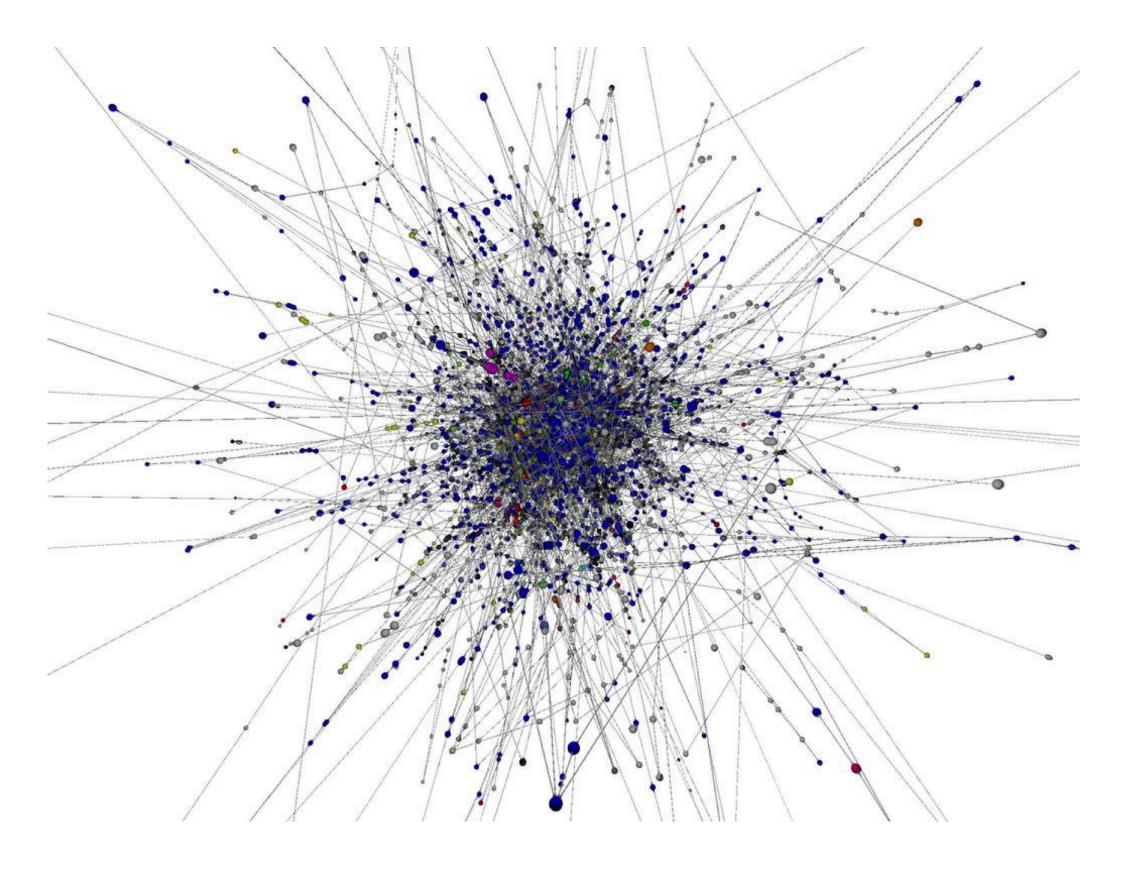
- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

- Just a bouquet of circles?
- What is intrinsic and what is just random fluctuation?

-> random topology

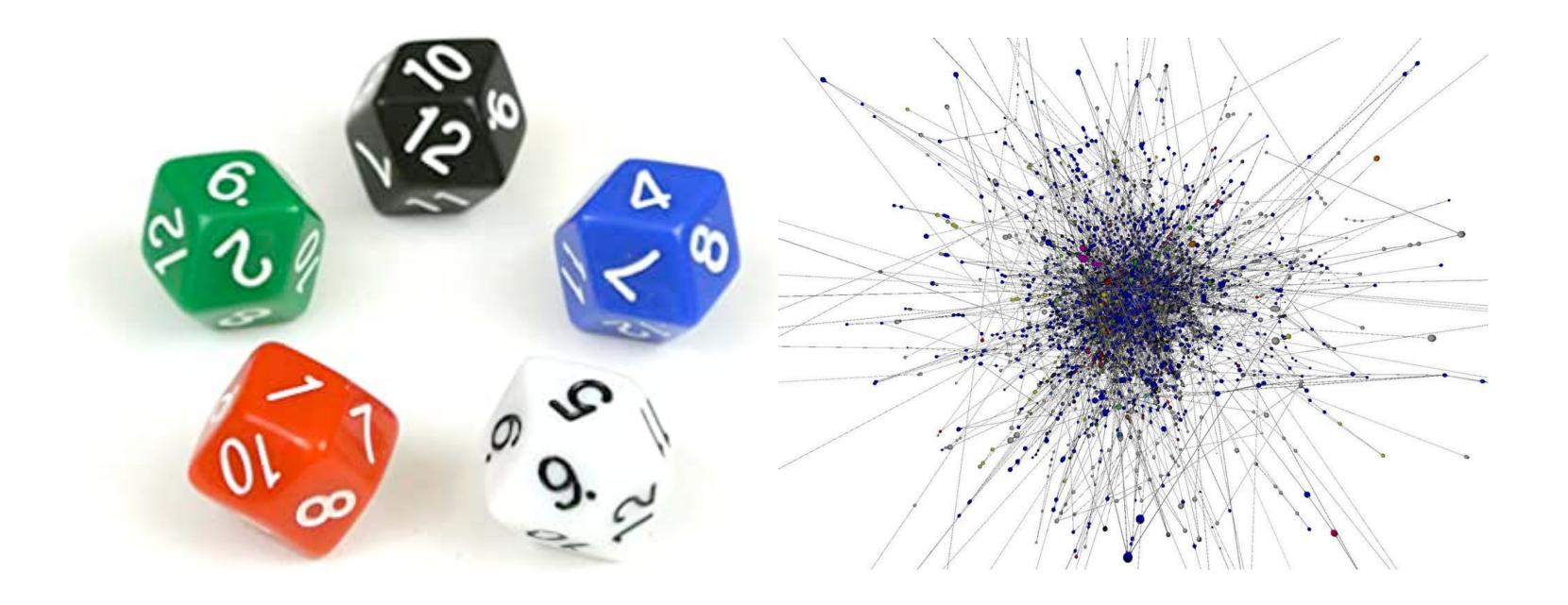


(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

Agenda

random topology

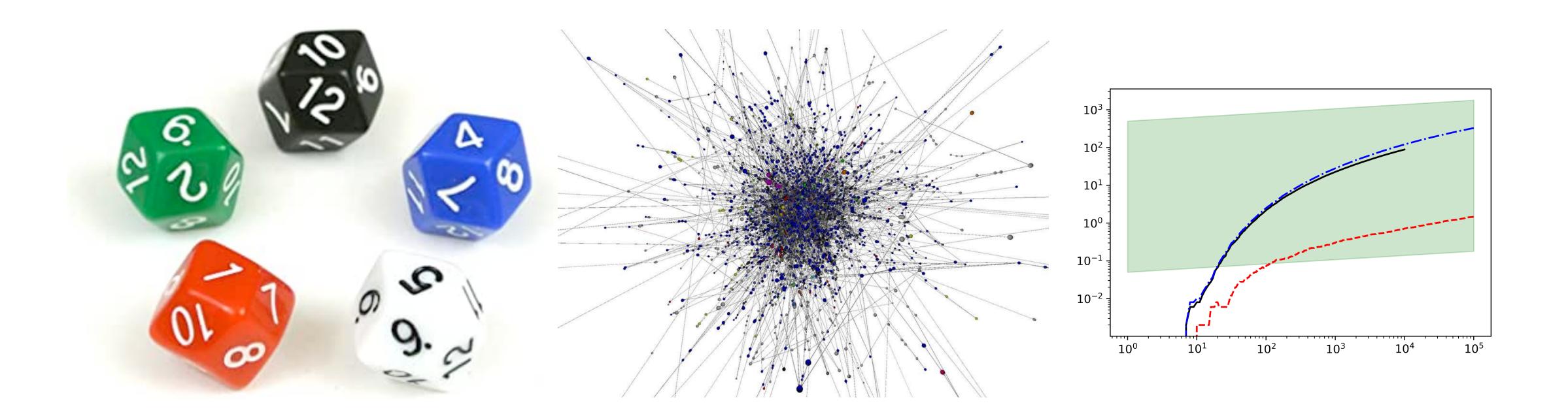
Agenda



random topology

preferential attachment

Agenda

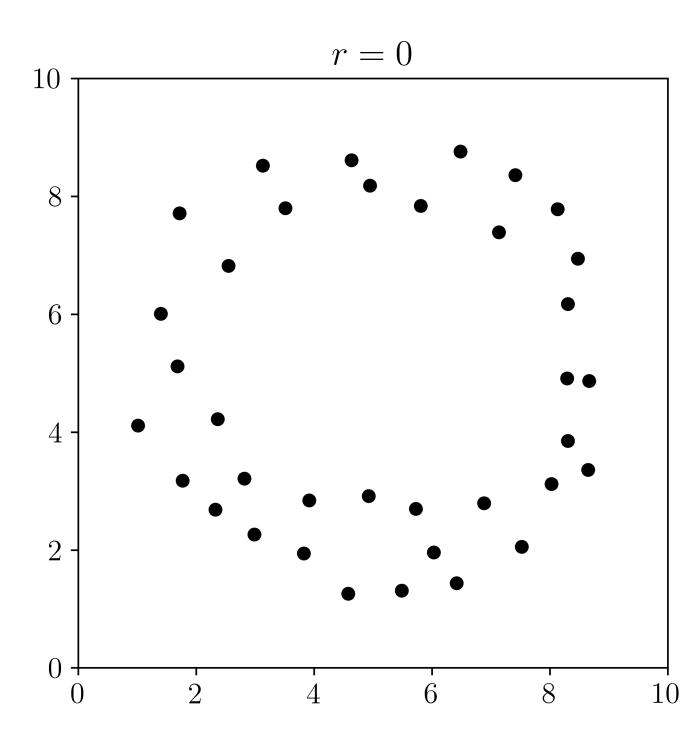


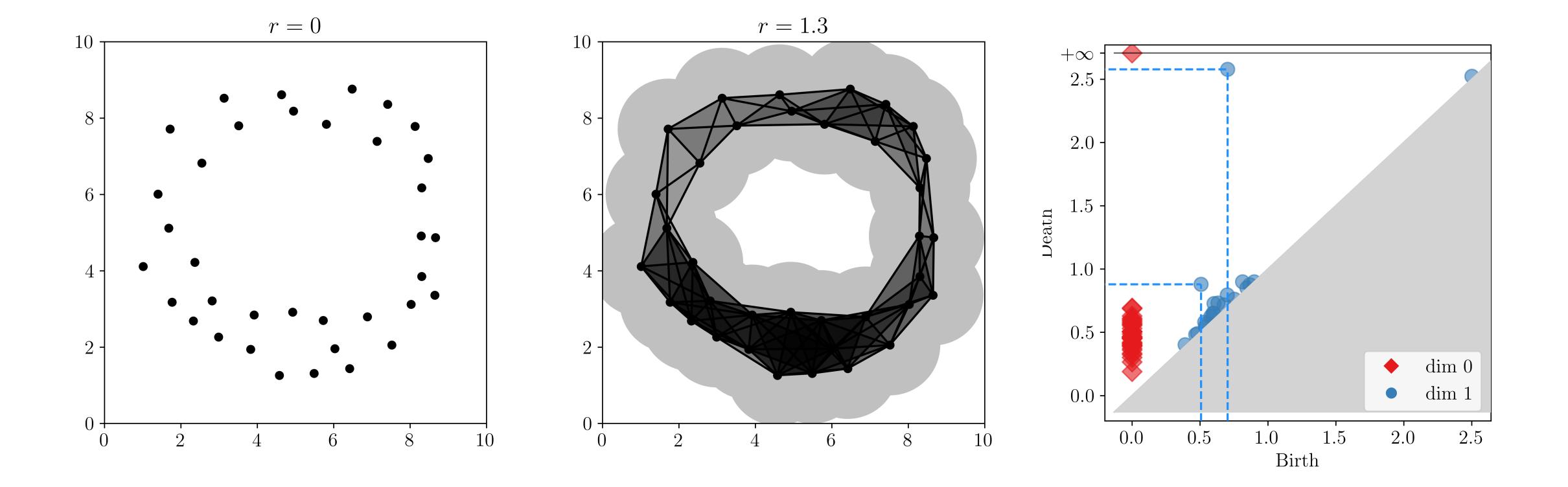
random topology preferential attachment our result

Yell at me whenever

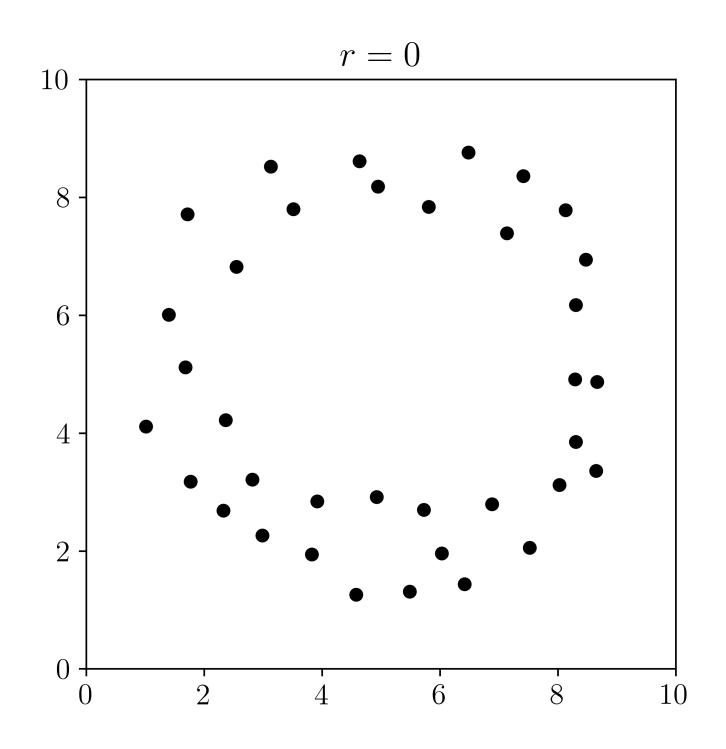
I. A Probabilist's Apology

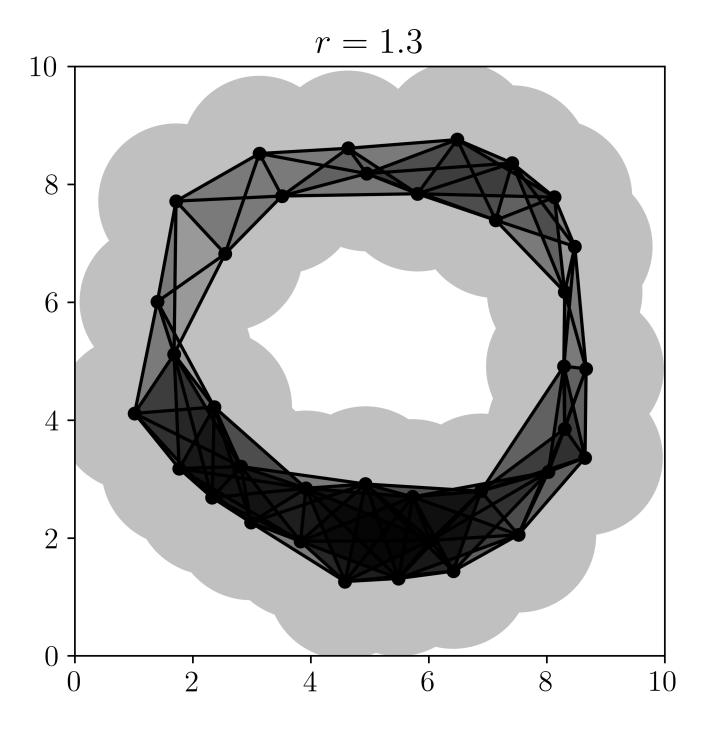
Why Random Topology and What we Know

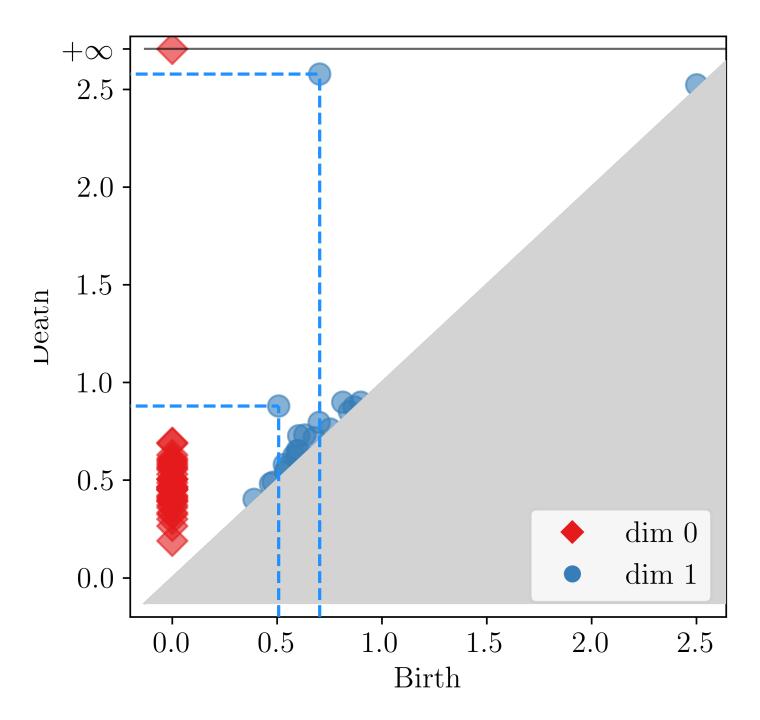




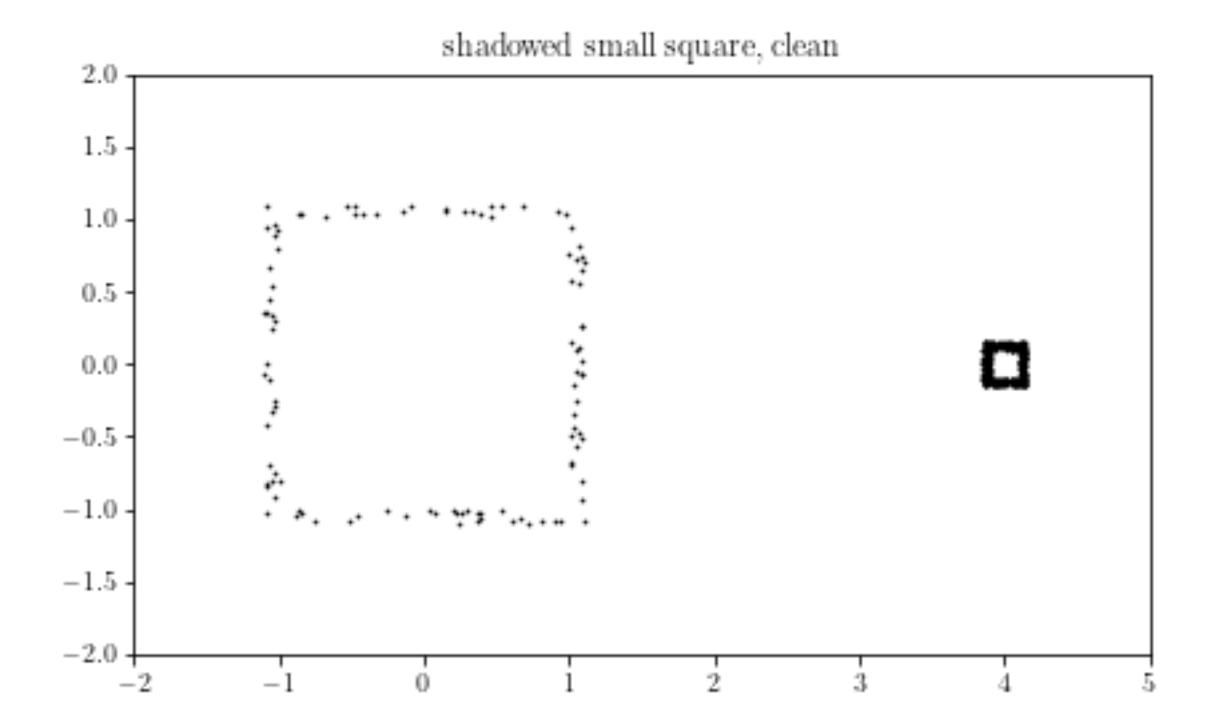
Size is Signal



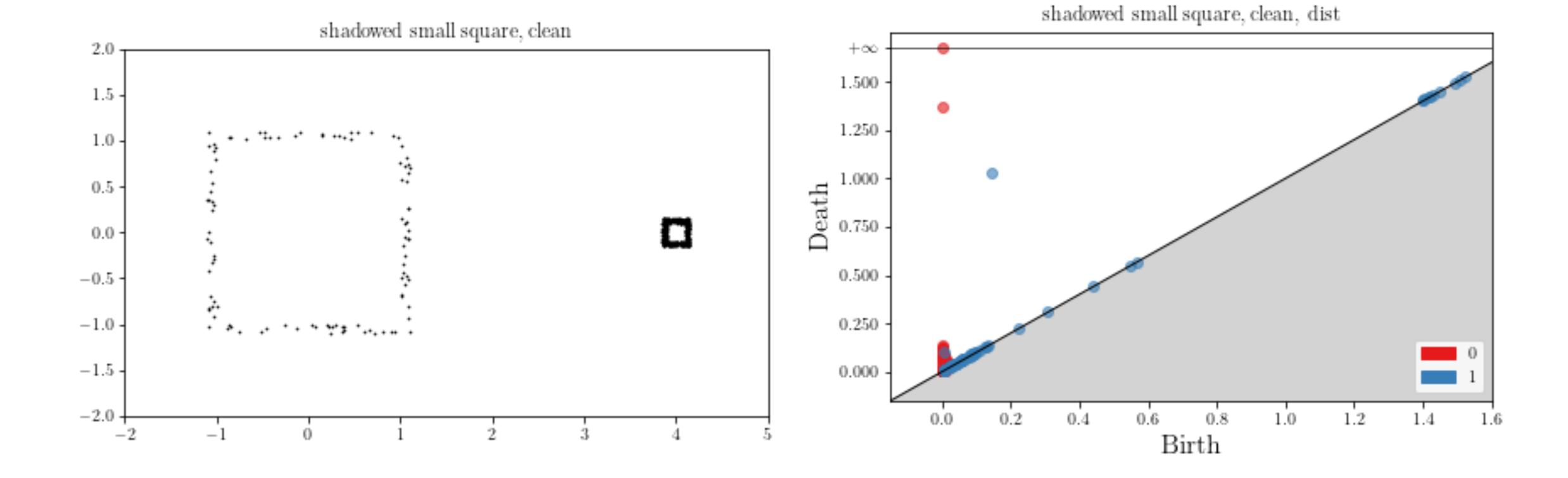




Or is it?



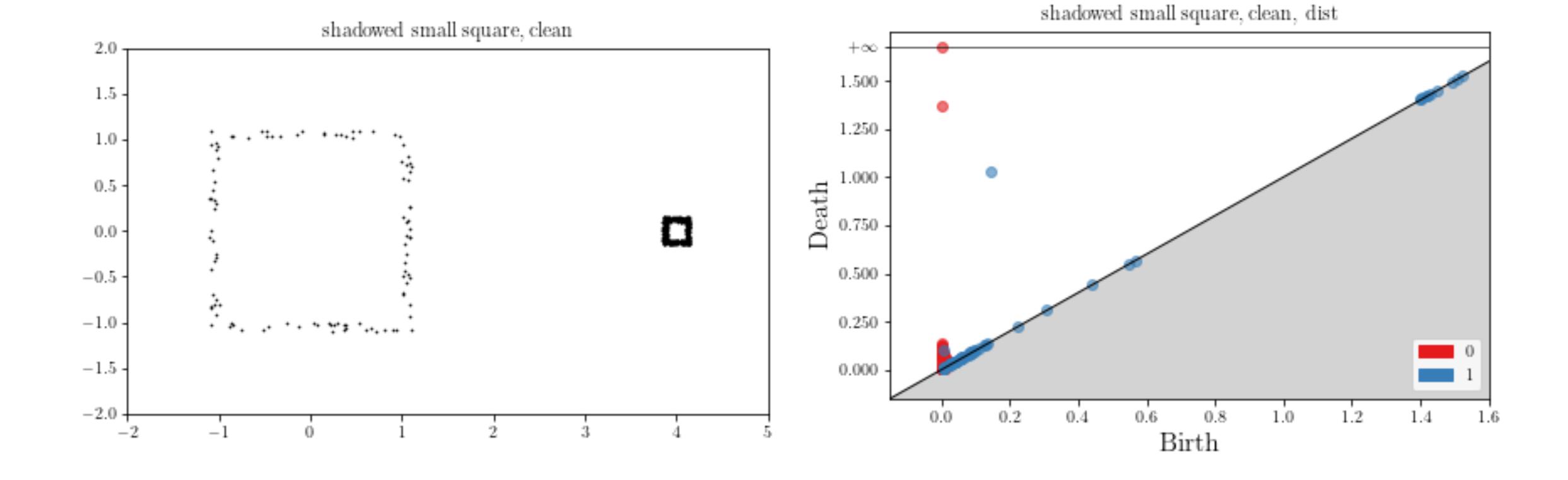
Or is it?



Size is Signal?

Surprise Size is Signal.

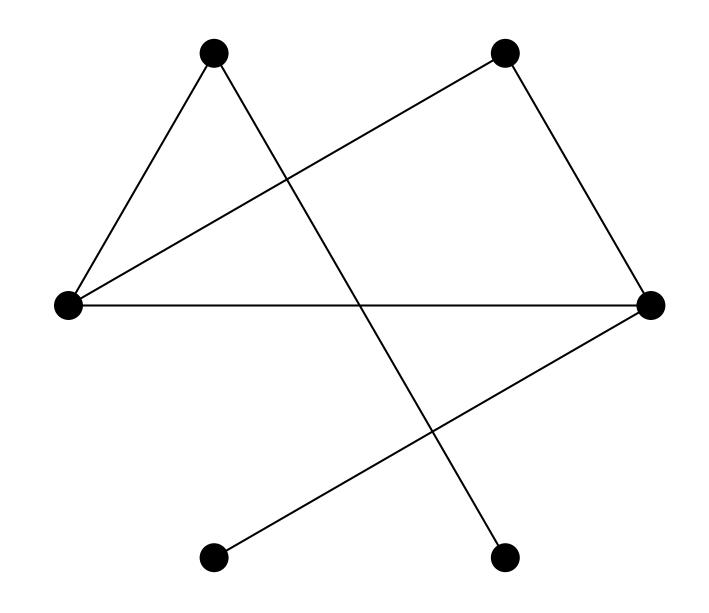
Random points don't do that.



Signal is what is not random.

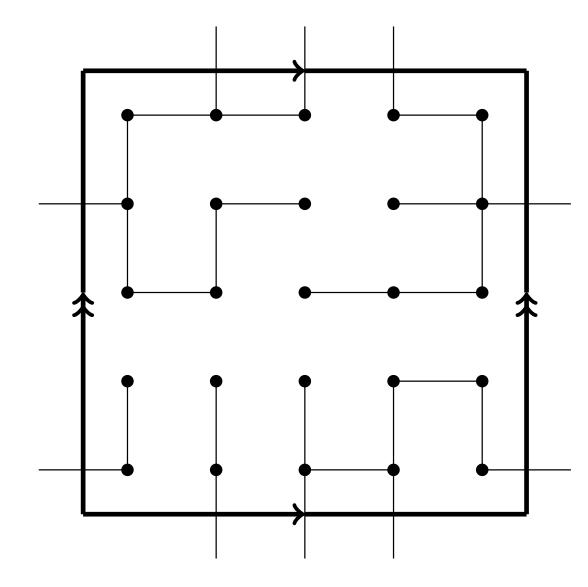
Signal is what is not random. So what is random?

Tapas of Random Topology

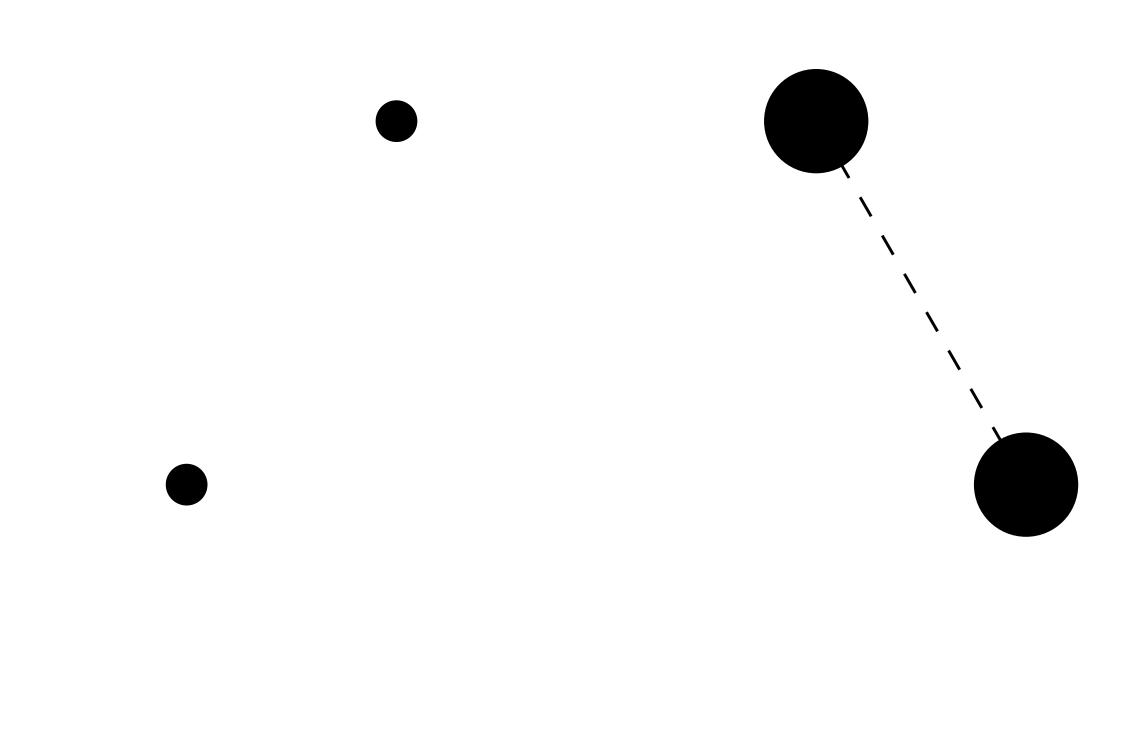


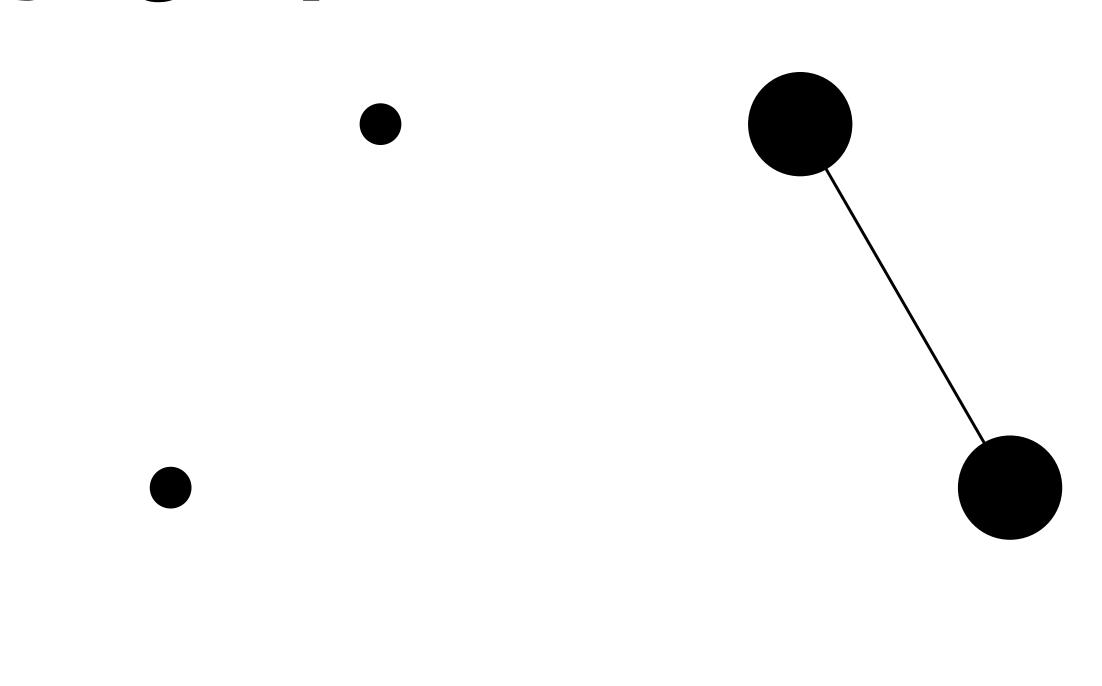
Erdo-Renyi Complexes

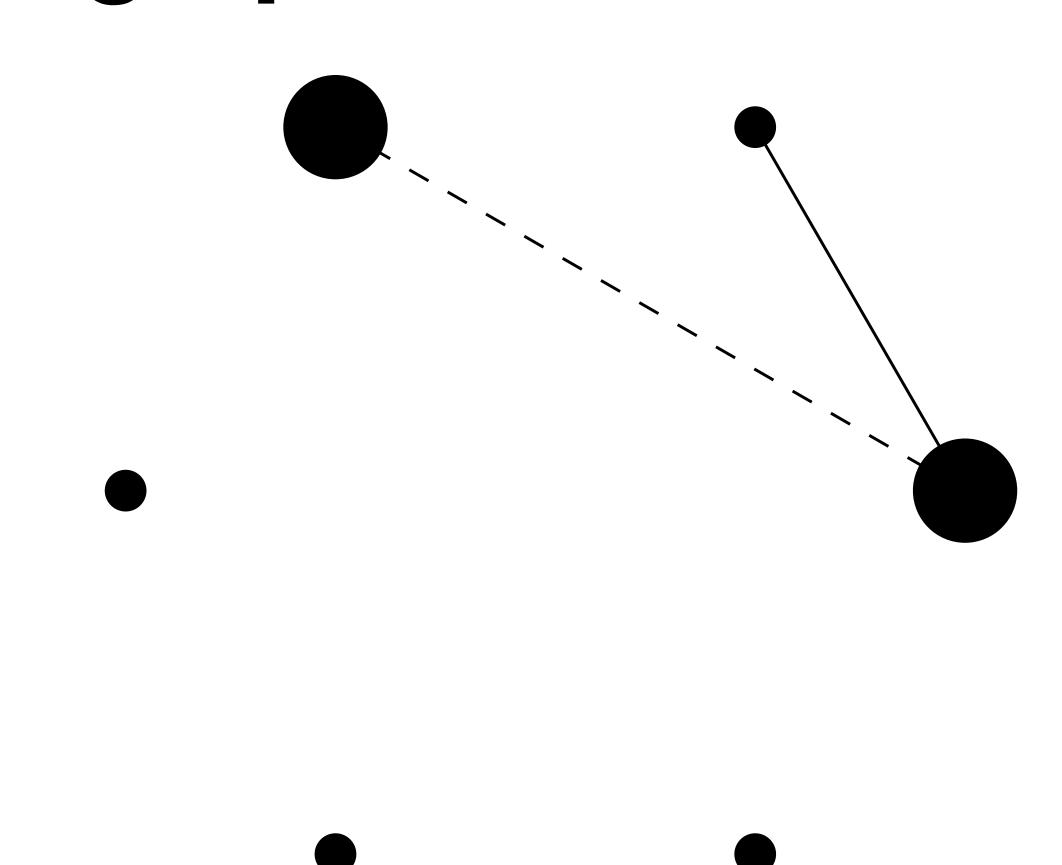
Geometric Complexes

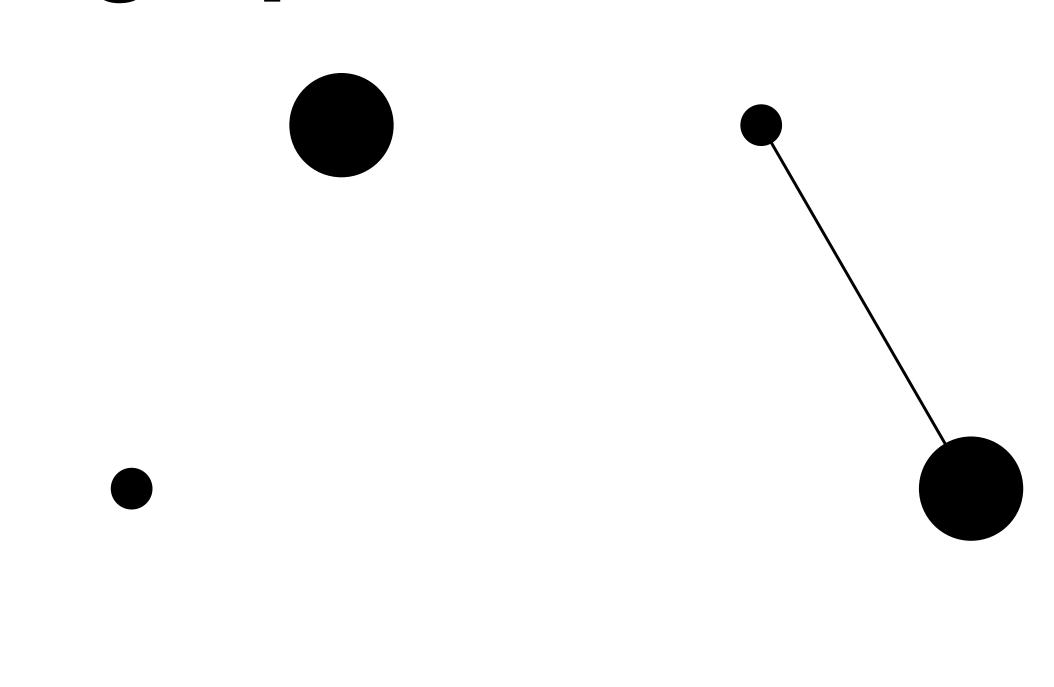


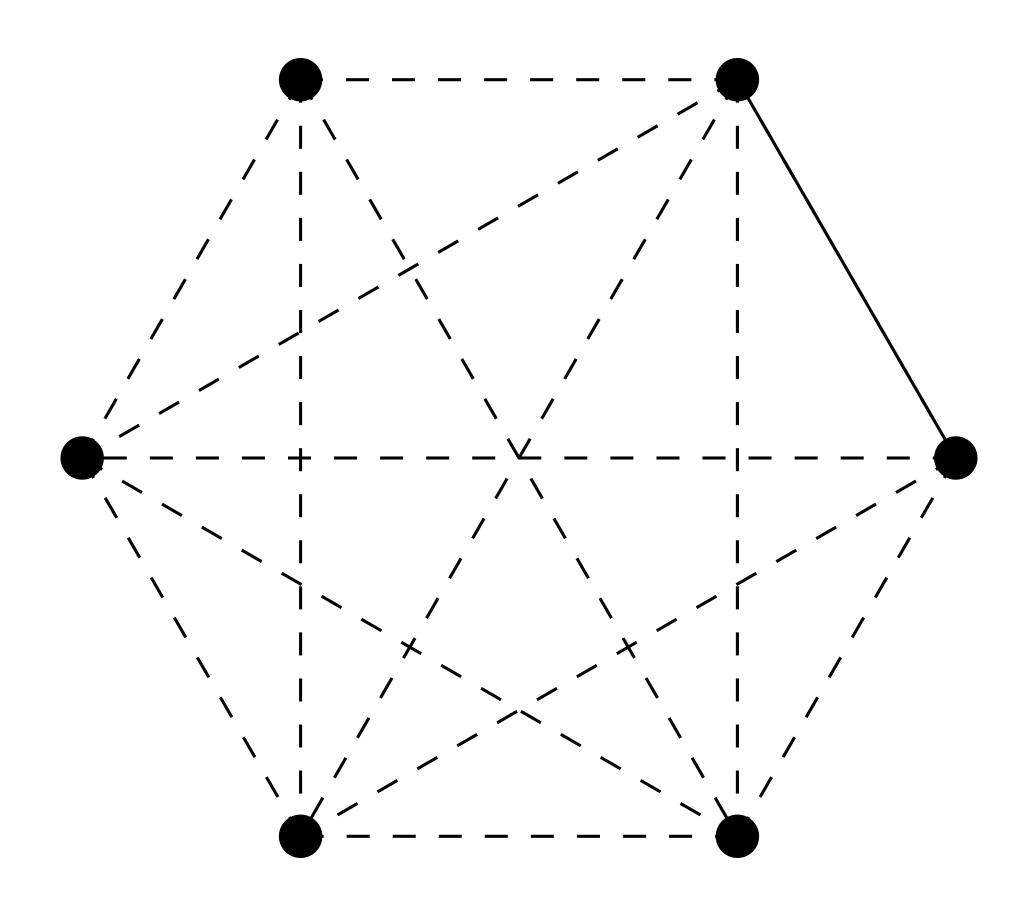
Topological Percolation

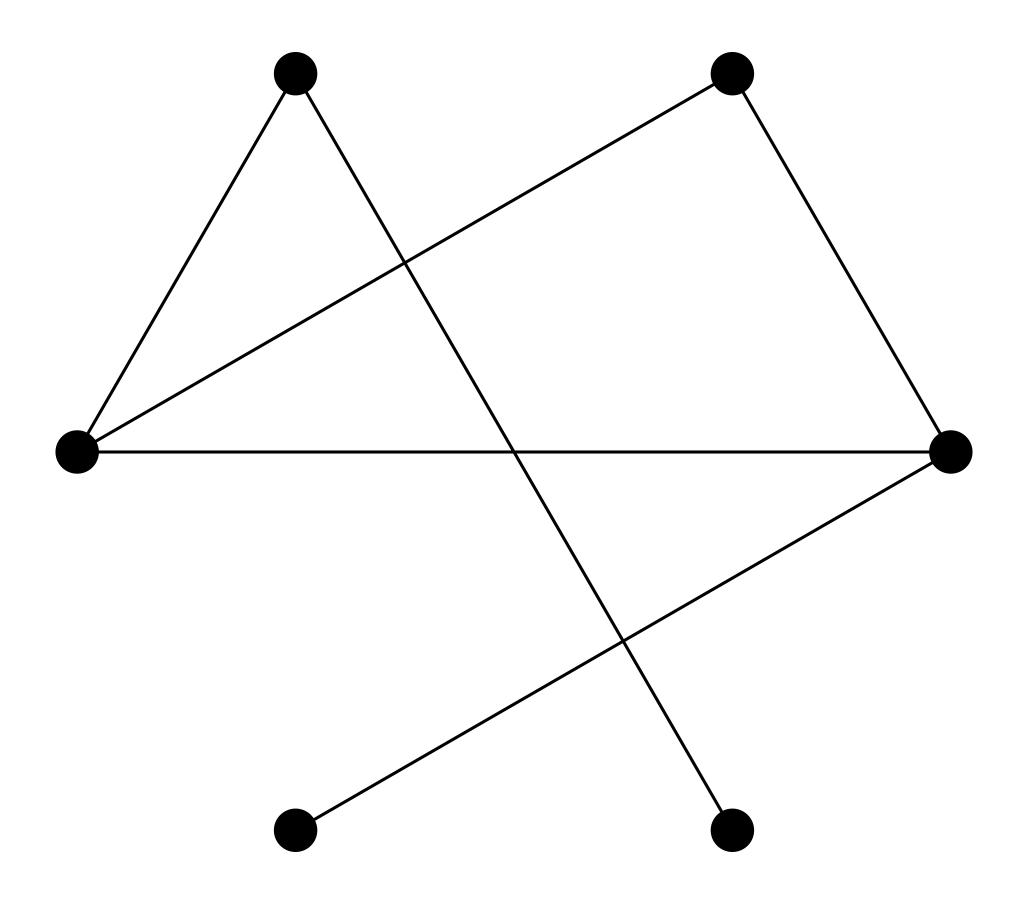






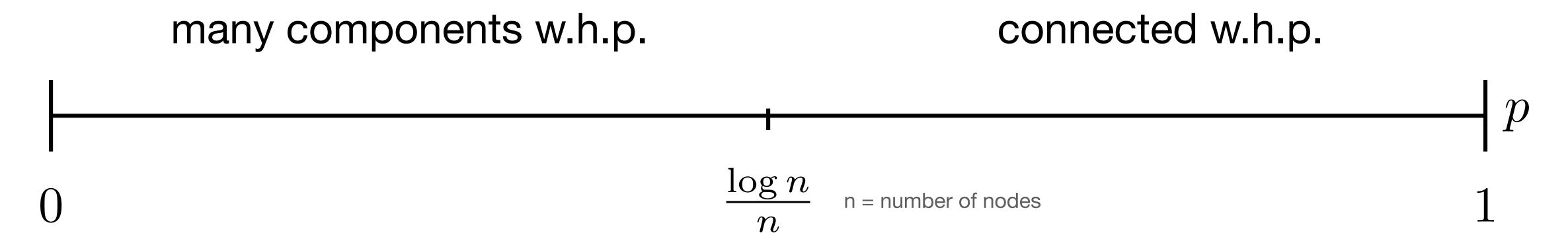






Phase Transition

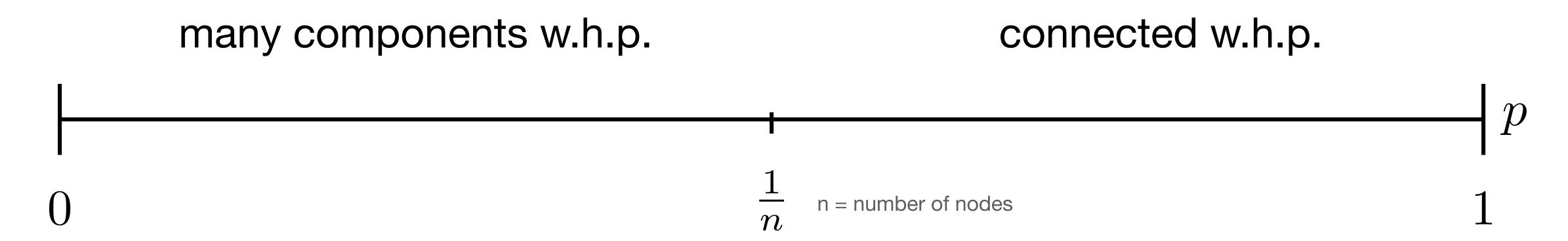
[Erdos-Renyi 1960]



all log terms and constants forgone

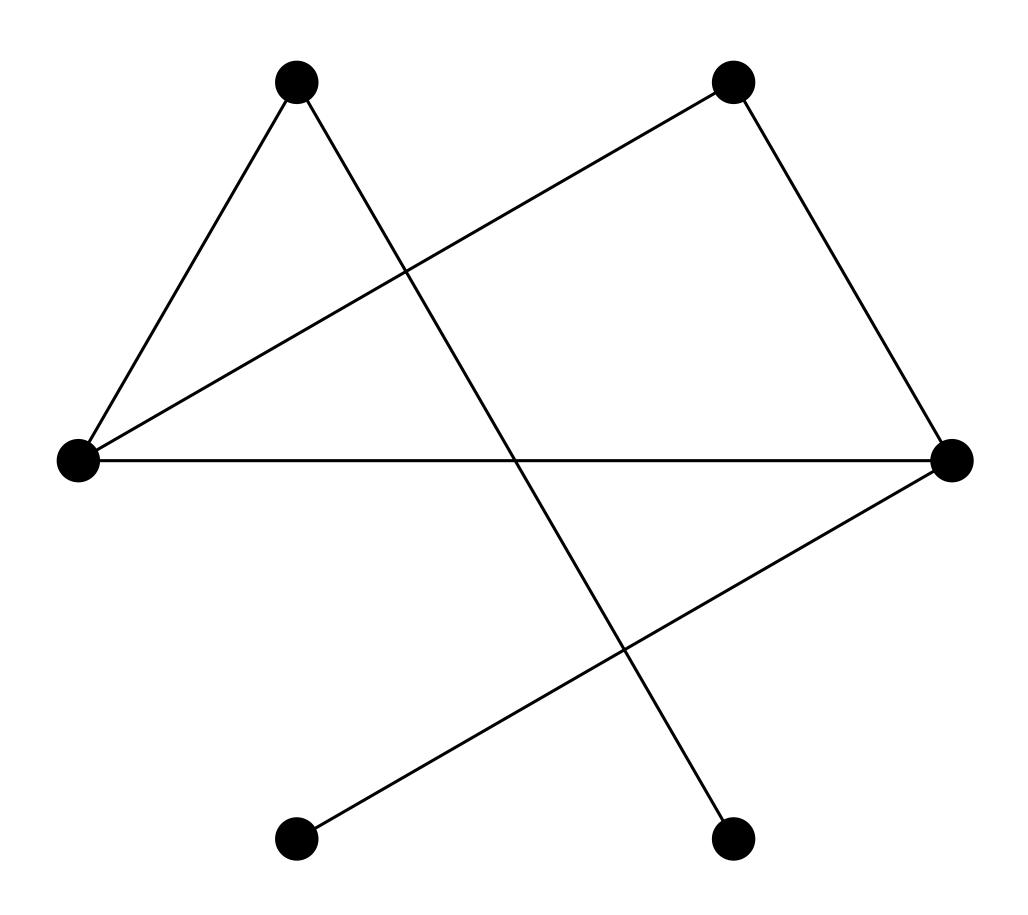
Phase Transition

[Erdos-Renyi 1960]

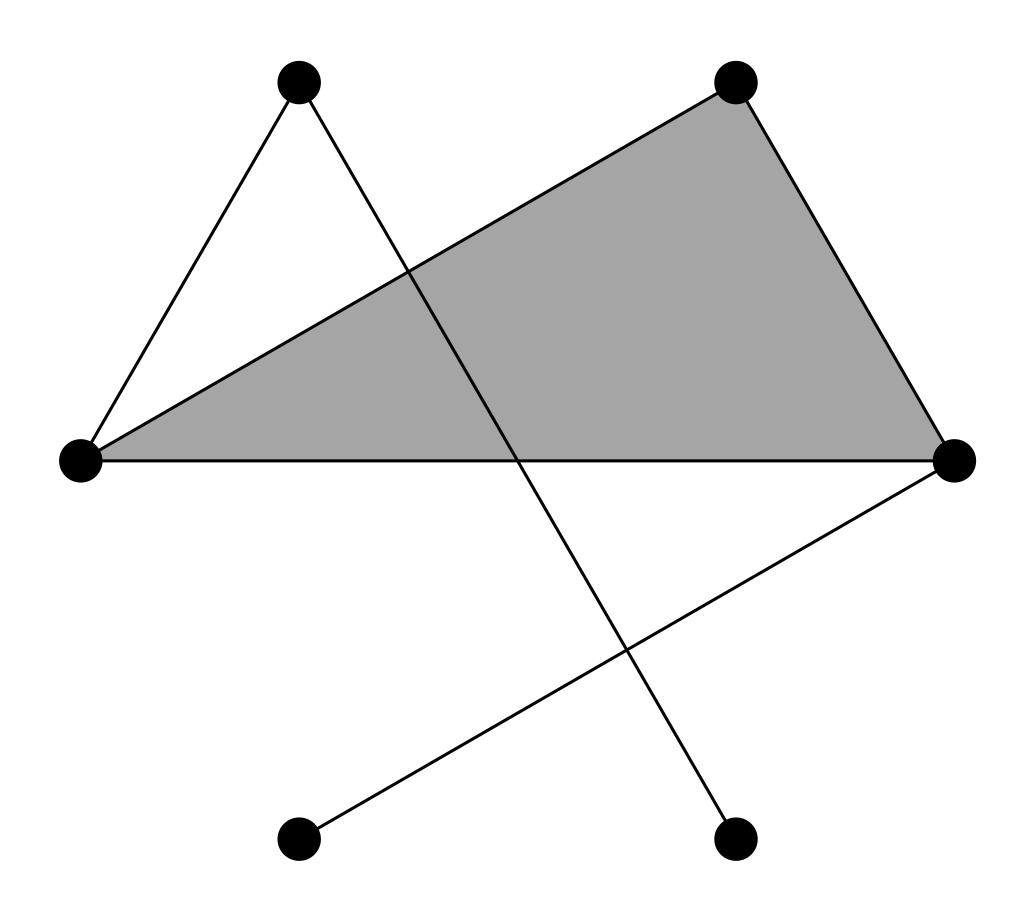


all log terms and constants forgone

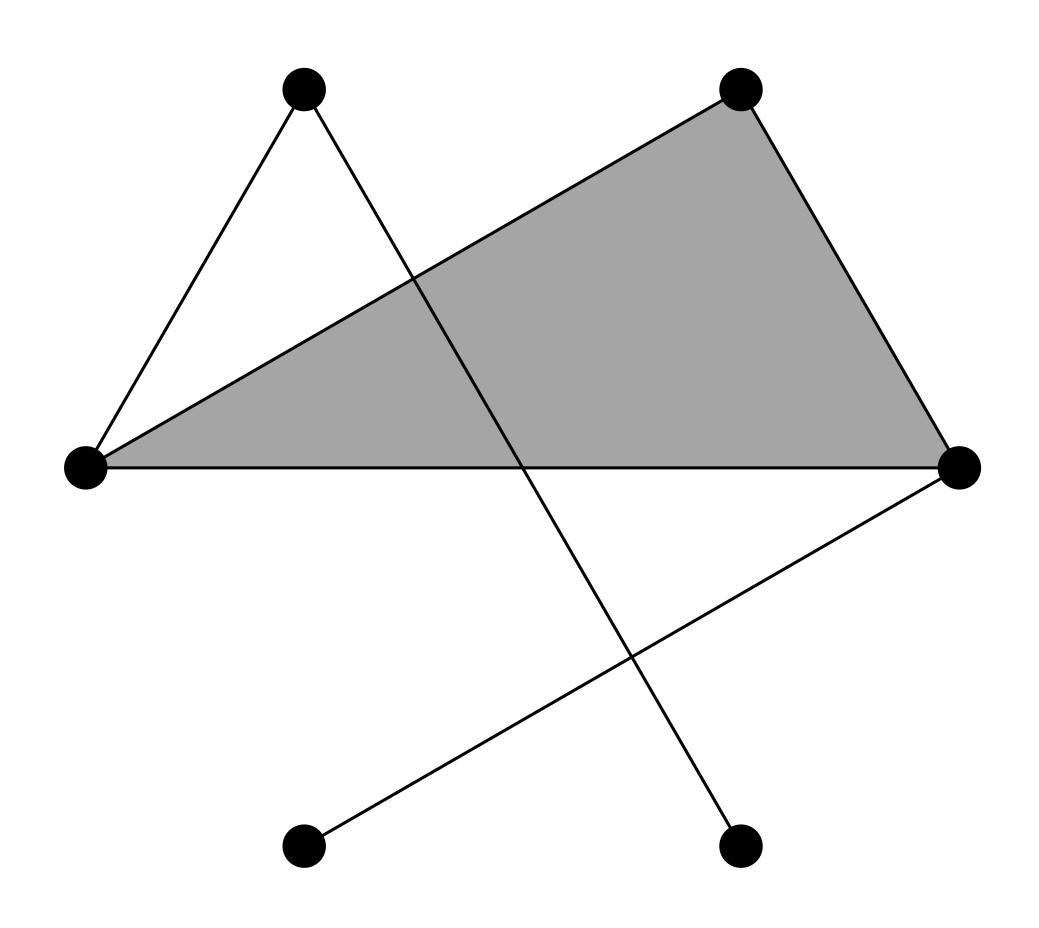
Erdos-Renyi Clique Complex



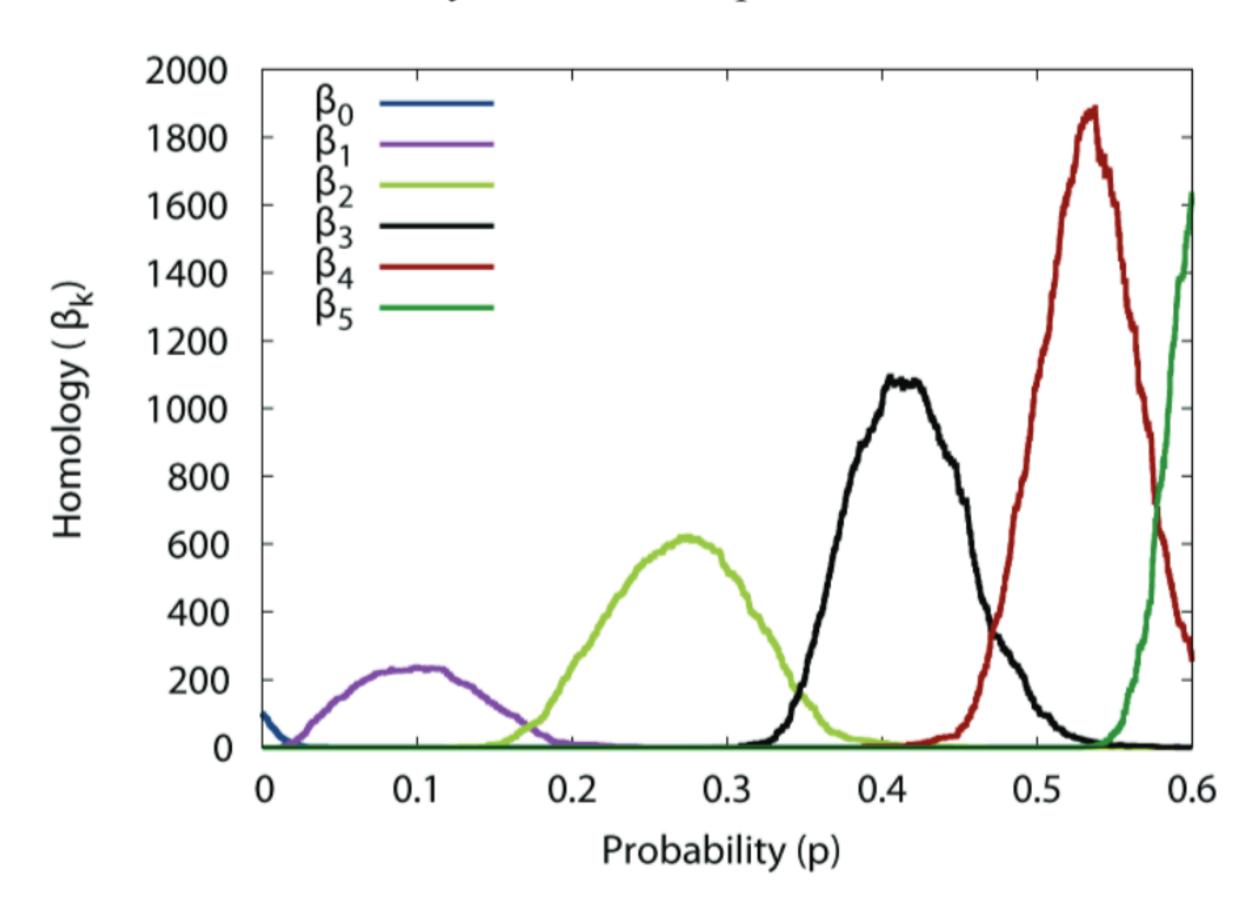
Erdos-Renyi Clique Complex



Betti Numbers

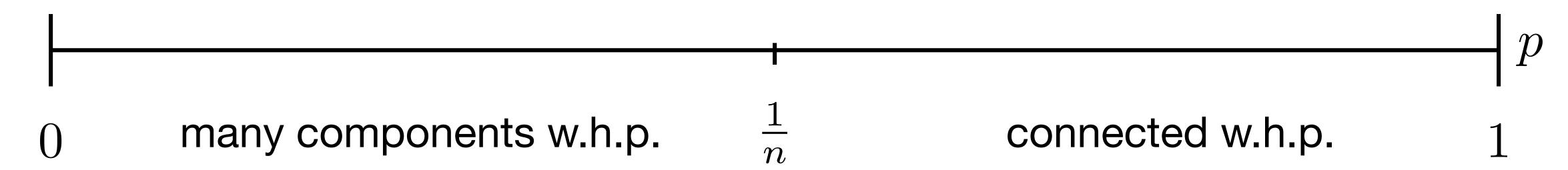


Erdős–Rényi random complex on n=100 vertices



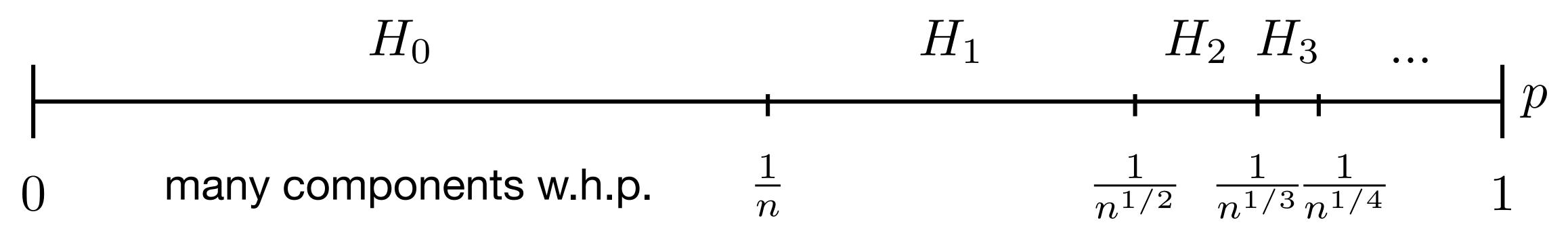
computation and plotting done by Zomorodian

[Erdos-Renyi 1960]



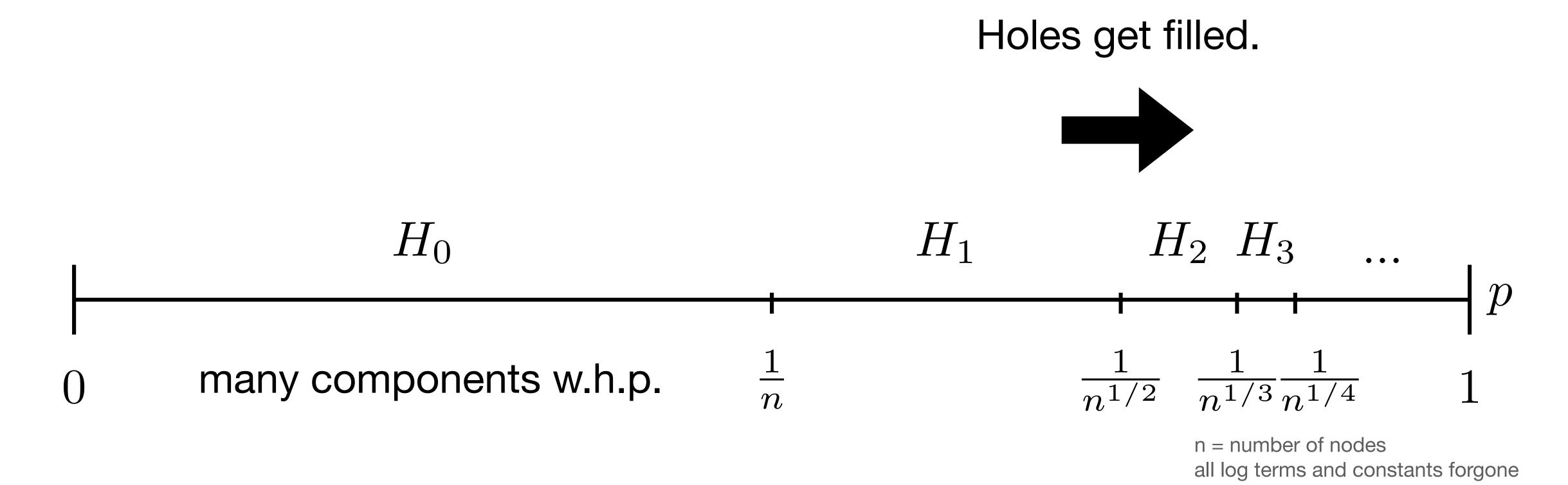
n = number of nodesall log terms and constants forgone

[Kahle 2009, 2014]

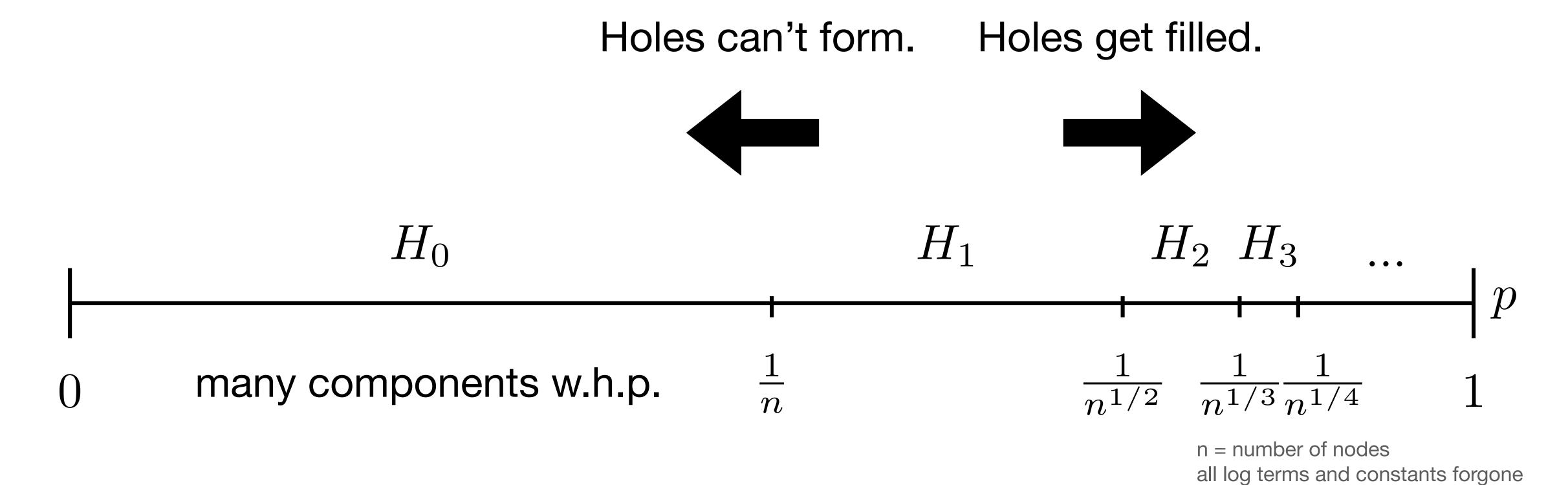


n = number of nodesall log terms and constants forgone

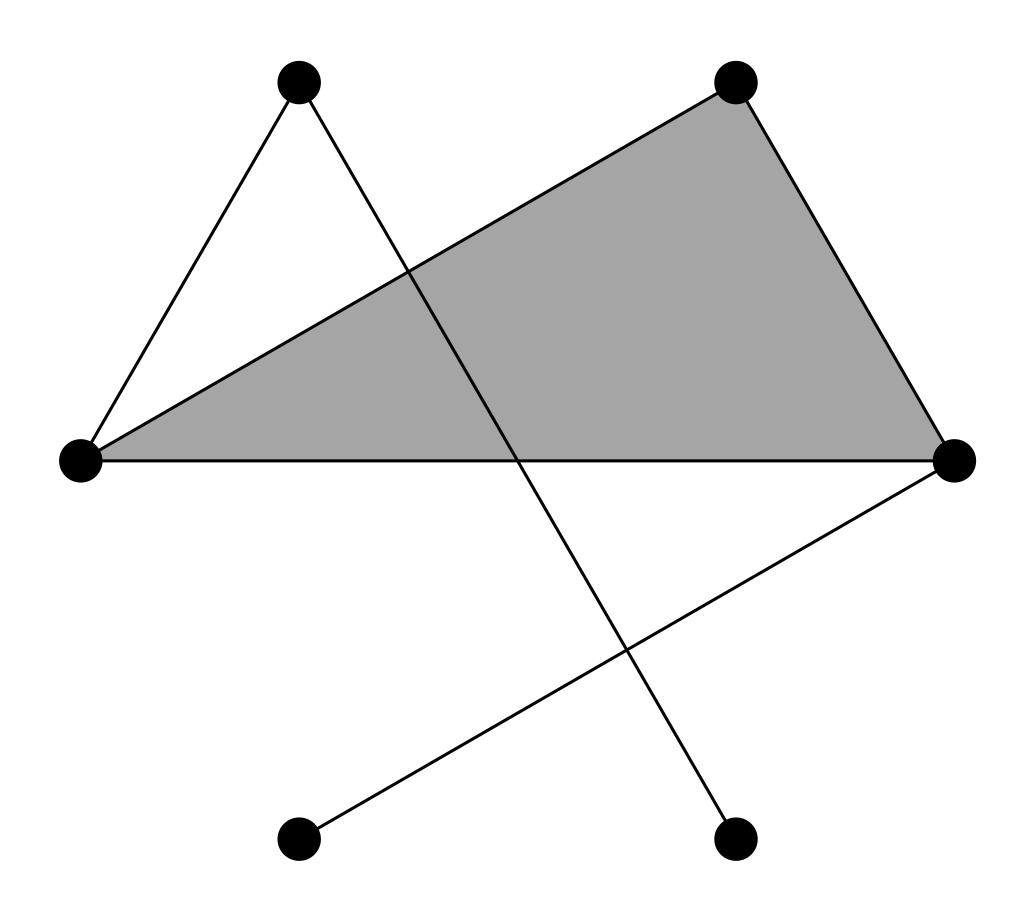
[Kahle 2009, 2014]



[Kahle 2009, 2014]



Erdos-Renyi Clique Complex



Geometric Complexes

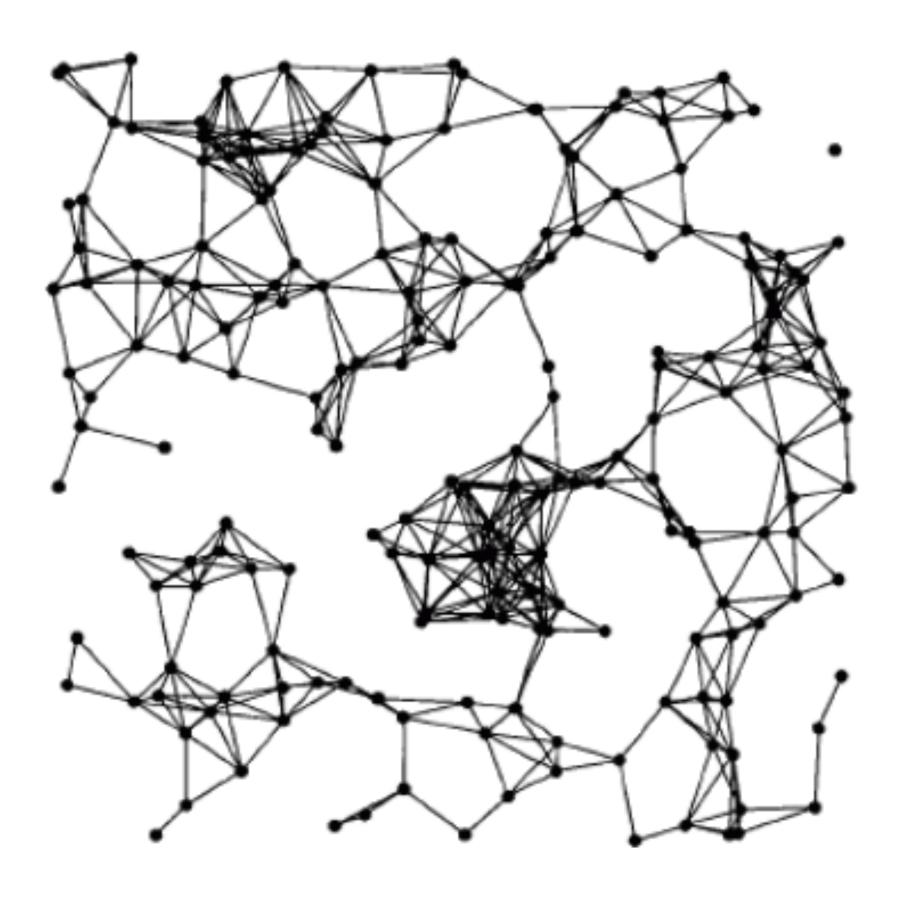


image credit: Penrose

Geometric Complexes

- Rips
- Cech

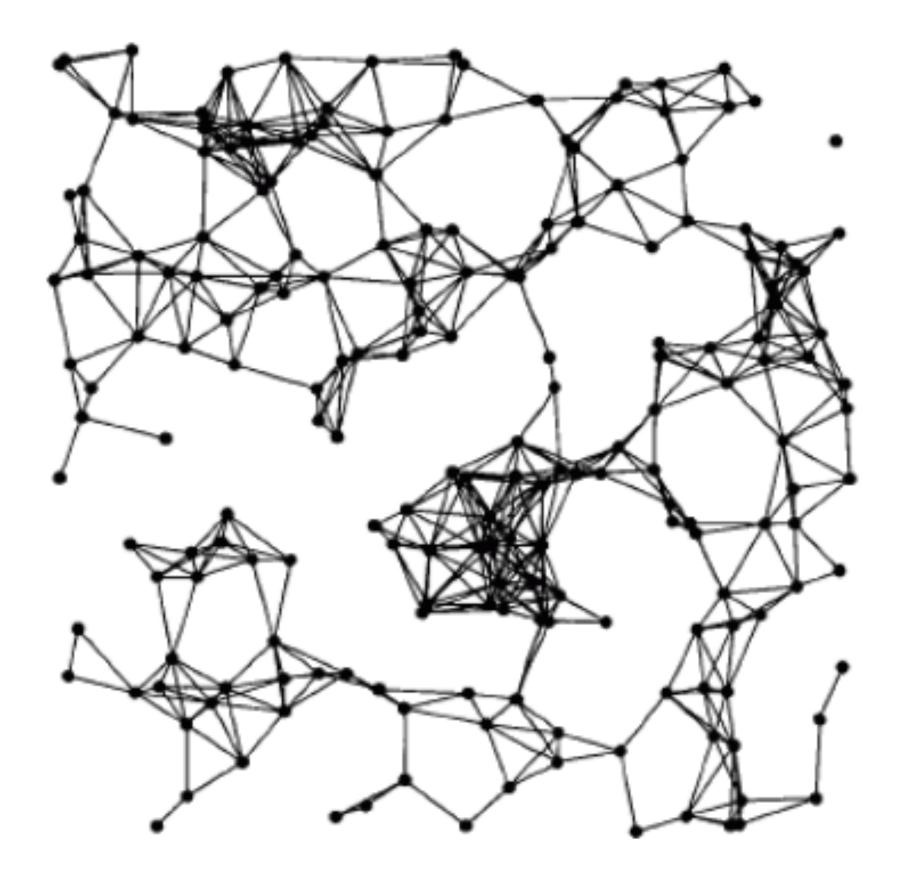


image credit: Penrose

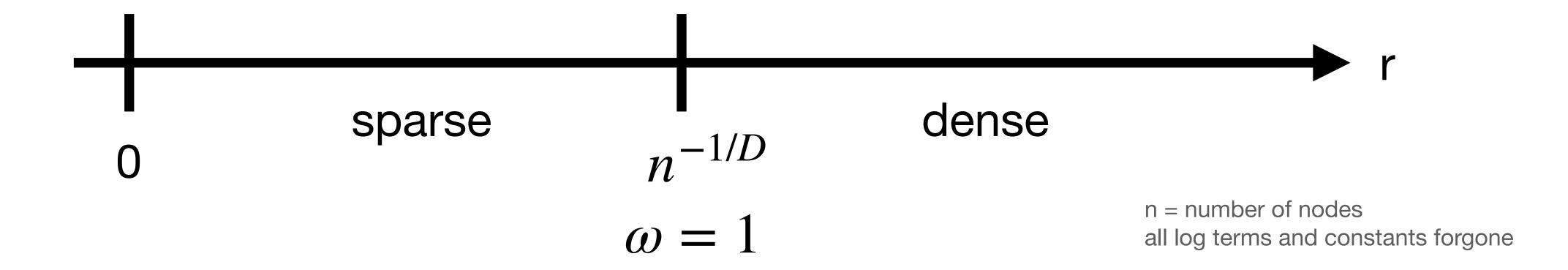
Expected Betti numbers at dimension k

[Kahle 2011]

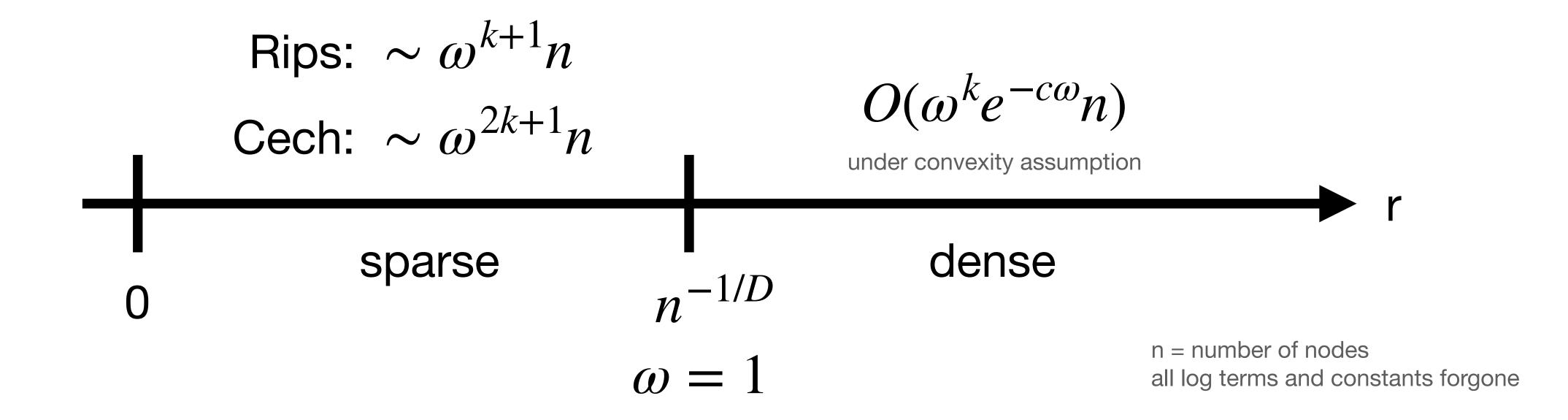
• *n*, the number of points

- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension

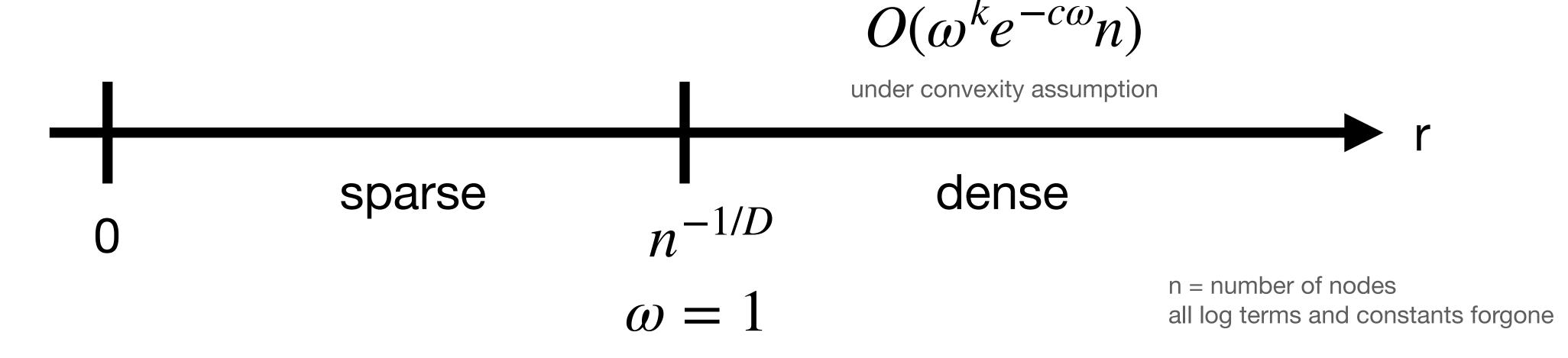
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension



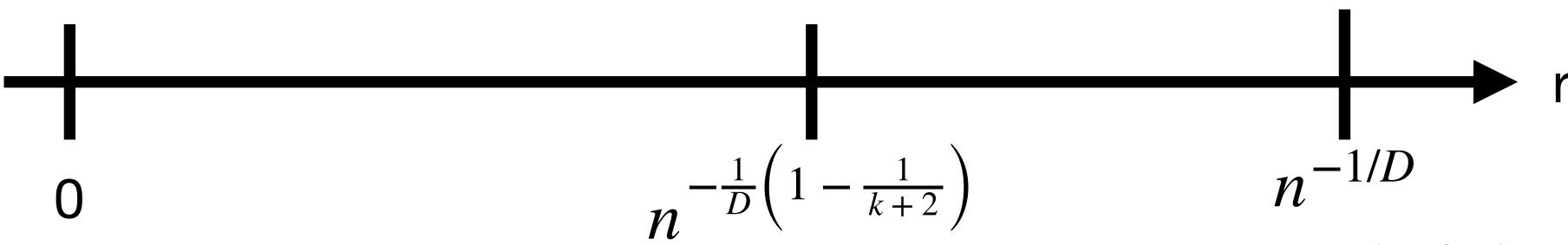
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension



- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$

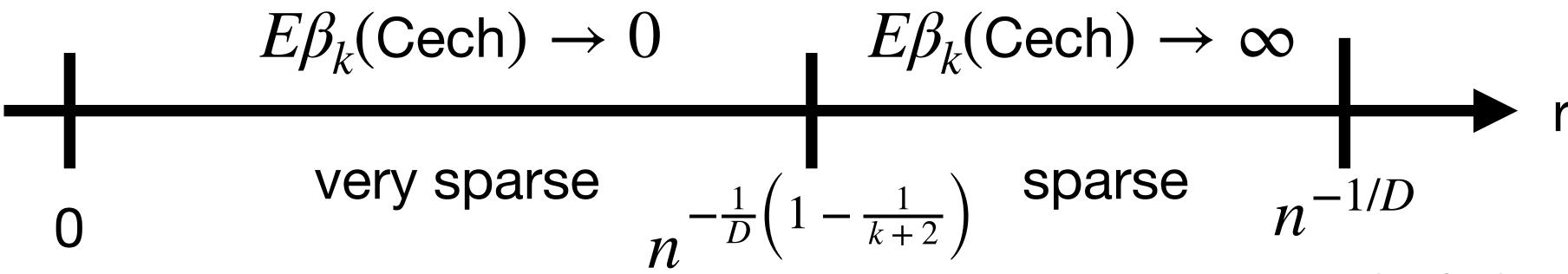


- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



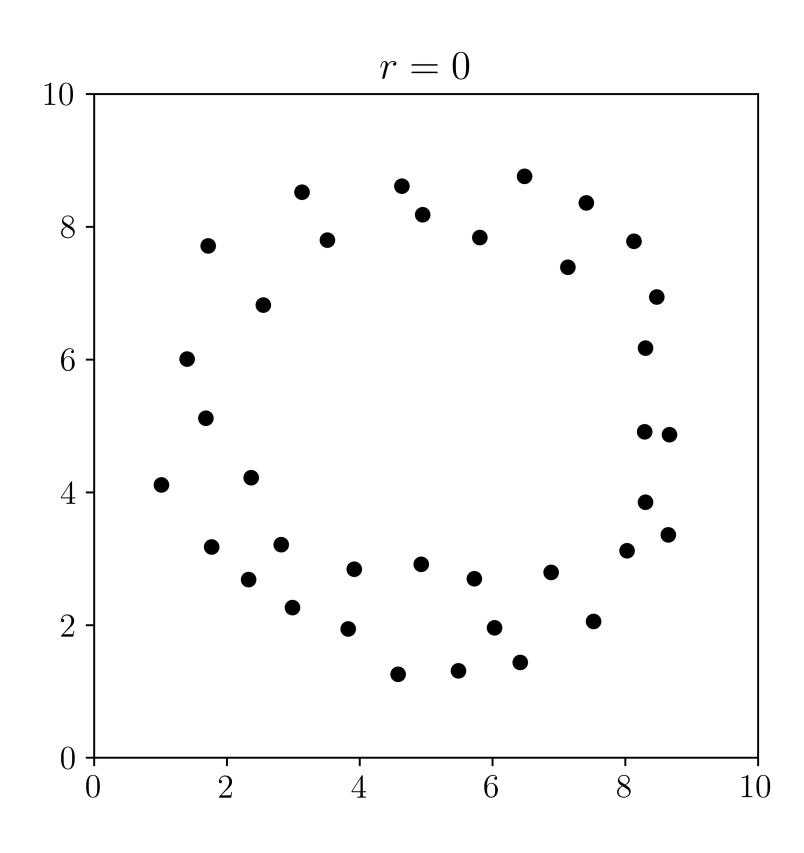
n = number of nodesall log terms and constants forgone

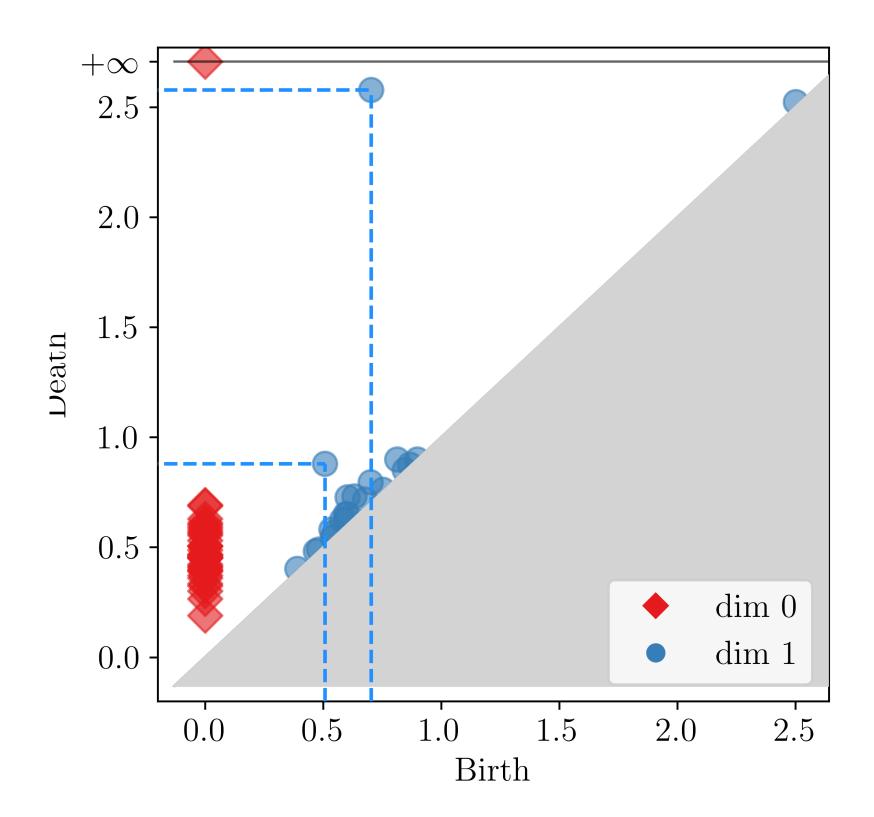
- *n*, the number of points
- $\omega = nr^D$, where D is the ambient dimension
- $E\beta_k(\text{Cech}) \sim \omega^{2k+1}n$



n = number of nodesall log terms and constants forgone

Maximally Persistent Cycles





Maximally Persistent Cycles

n points in expectation

k-cycle

Maximally Persistent Cycles

[Bobrowski-Kahle-Skraba 2017]

n points in expectation

k-cycle

$$c\left(\frac{\log n}{\log\log n}\right)^{1/k} \le \text{max persistence} \le C\left(\frac{\log n}{\log\log n}\right)^{1/k}$$
a.a.s.

Geometric Complexes

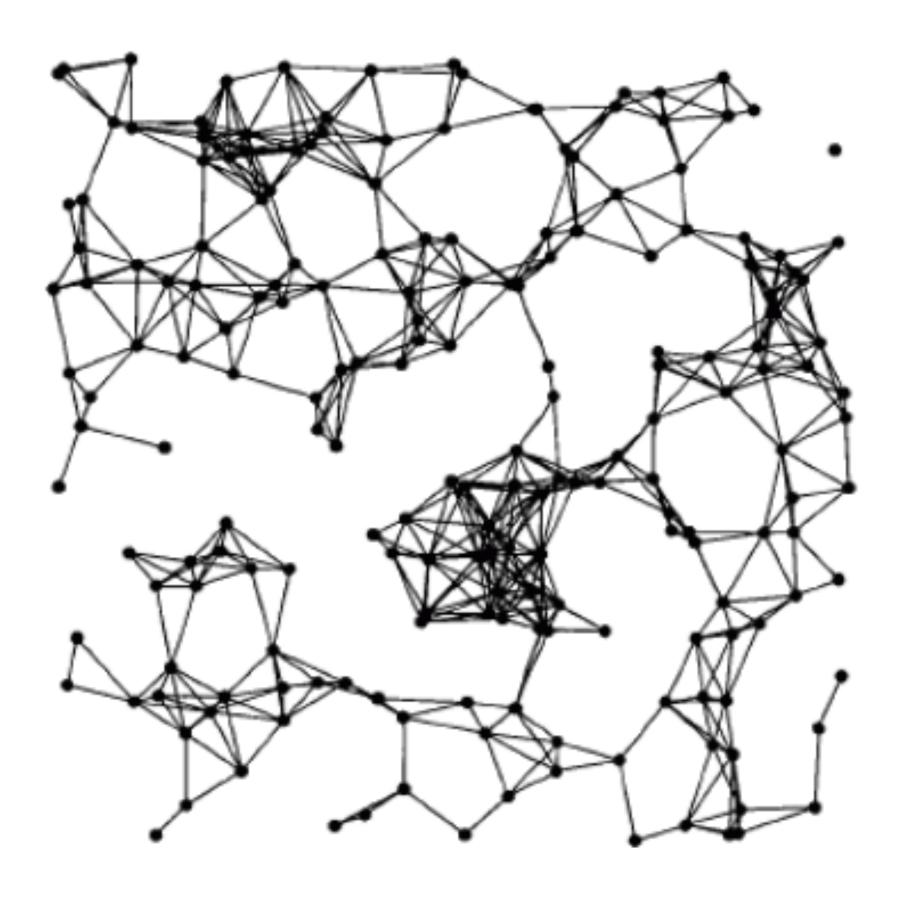
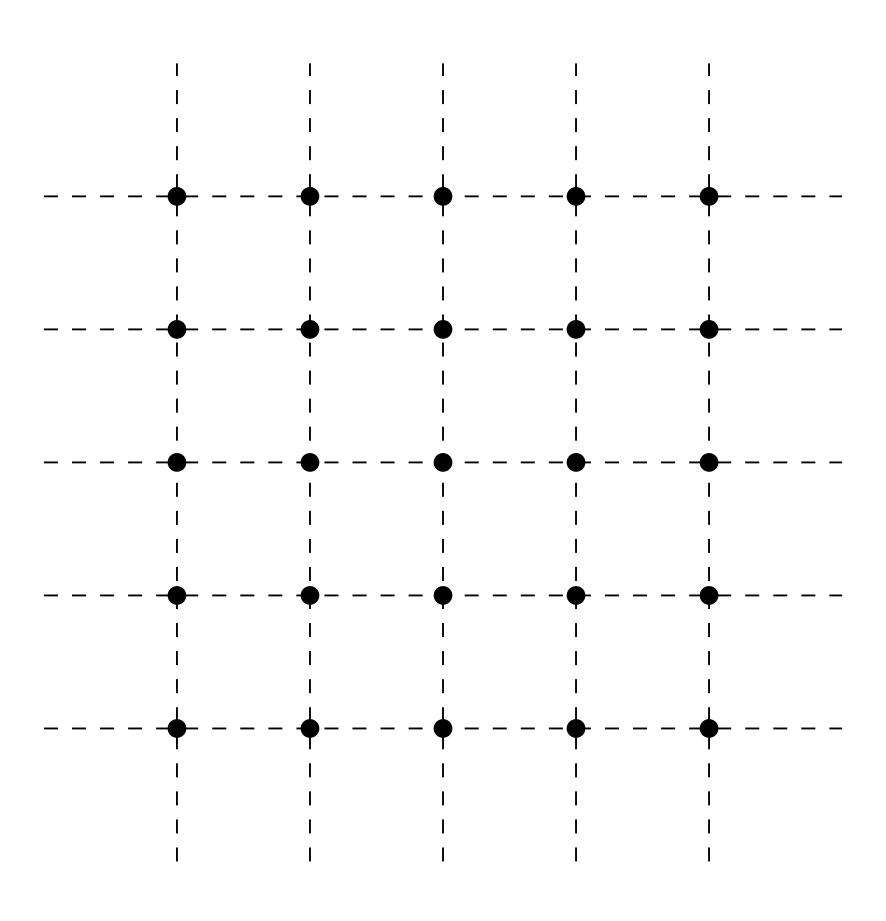
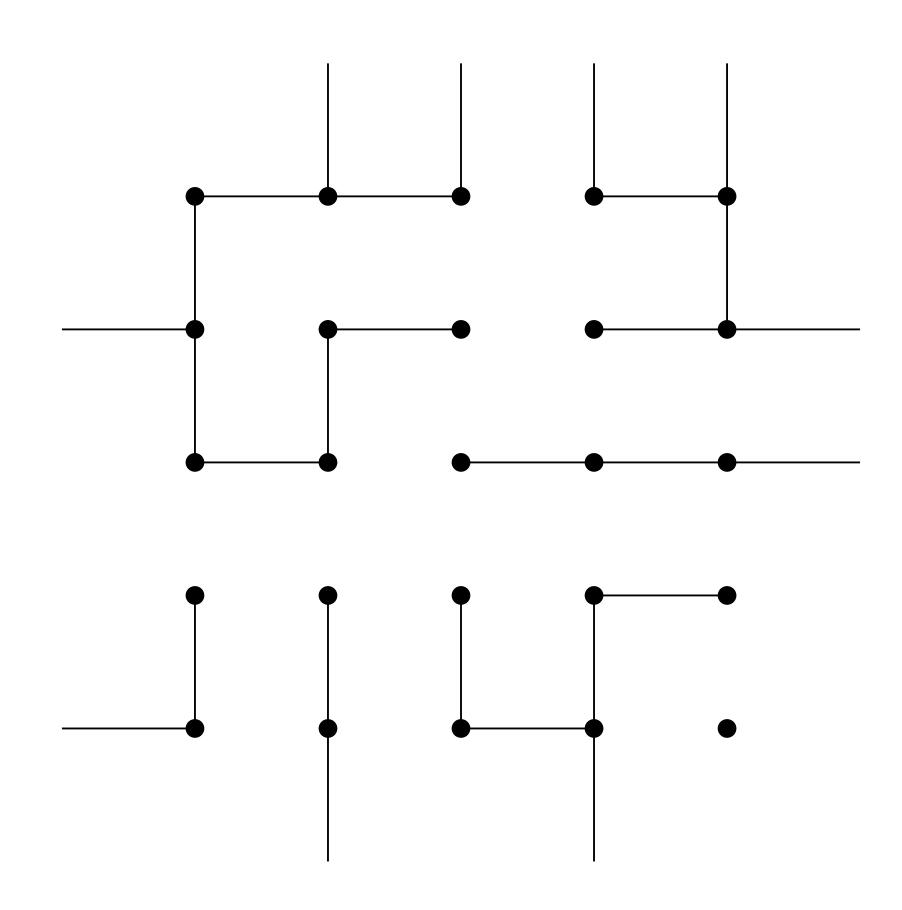


image credit: Penrose

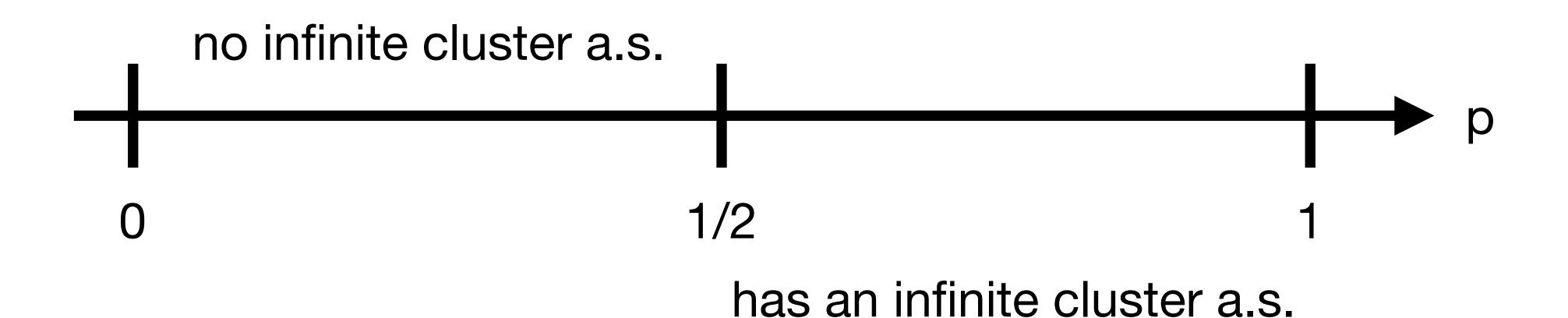
Bernoulli Bond Percolation



Bernoulli Bond Percolation

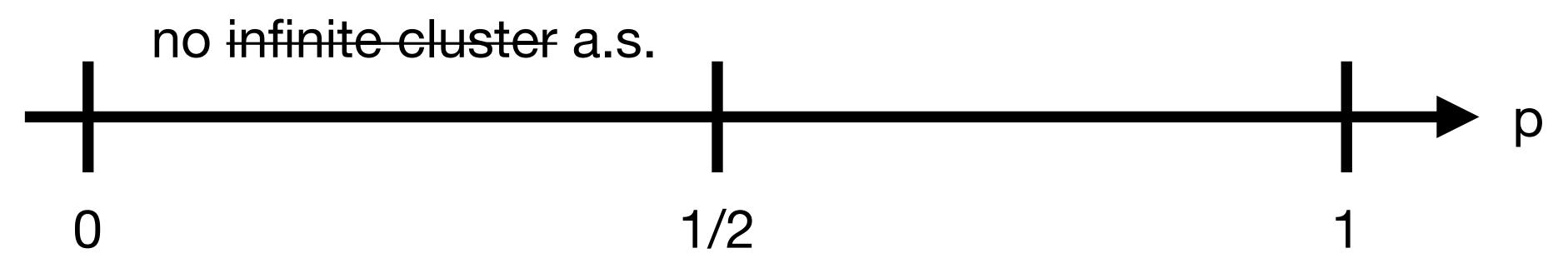


[Harris 1960, Kesten 1980]



[Harris 1960, Kesten 1980]

giant component

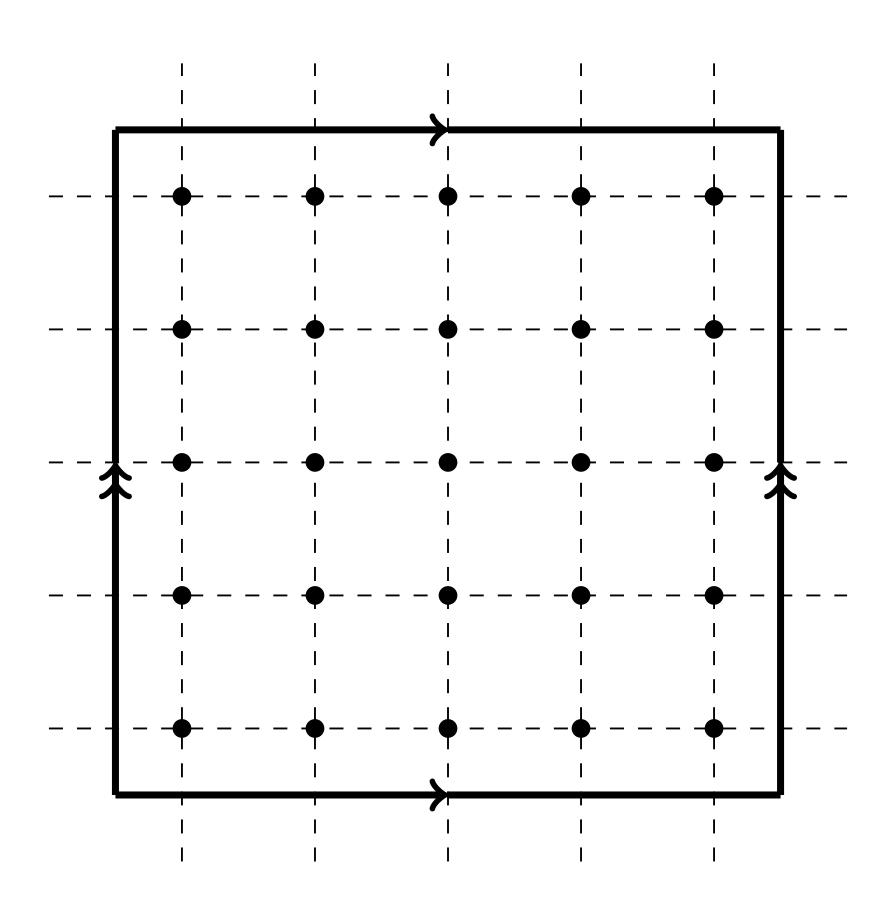


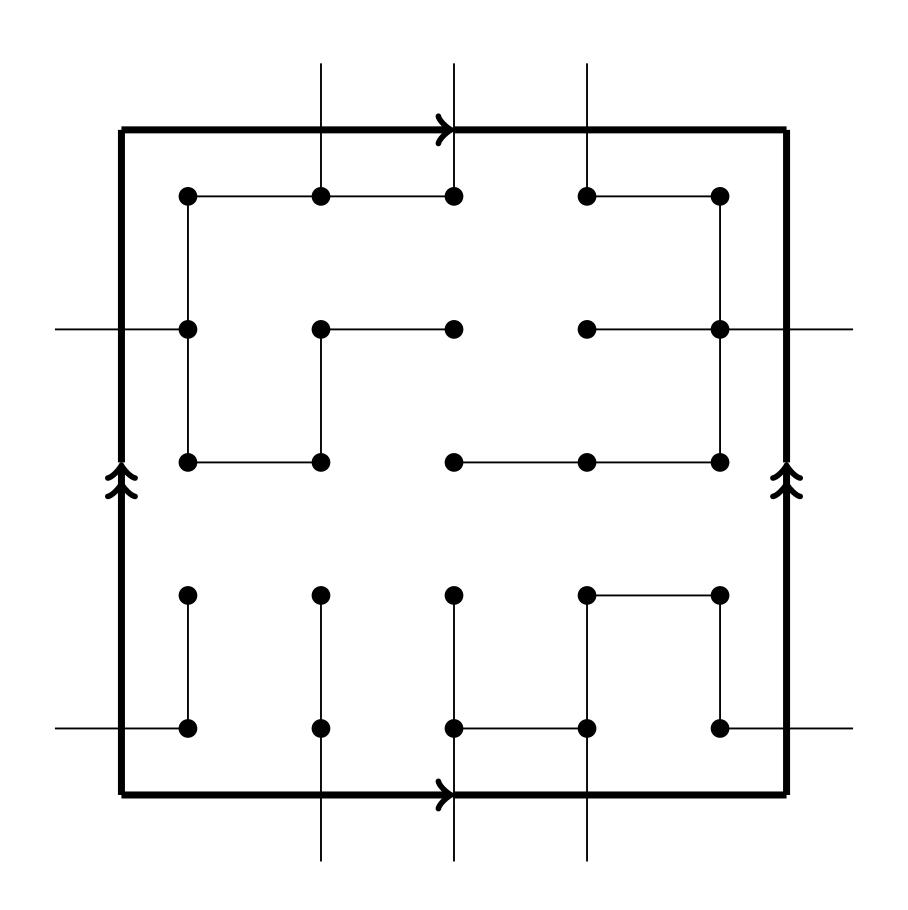
has an infinite cluster a.s.

giant component

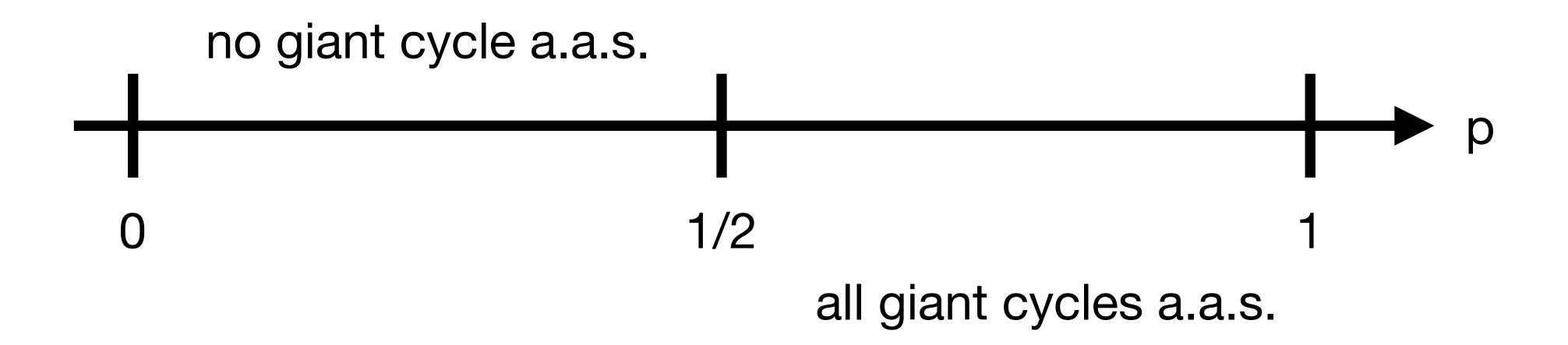
Giant Cycles?

Bernoulli Bond Percolation

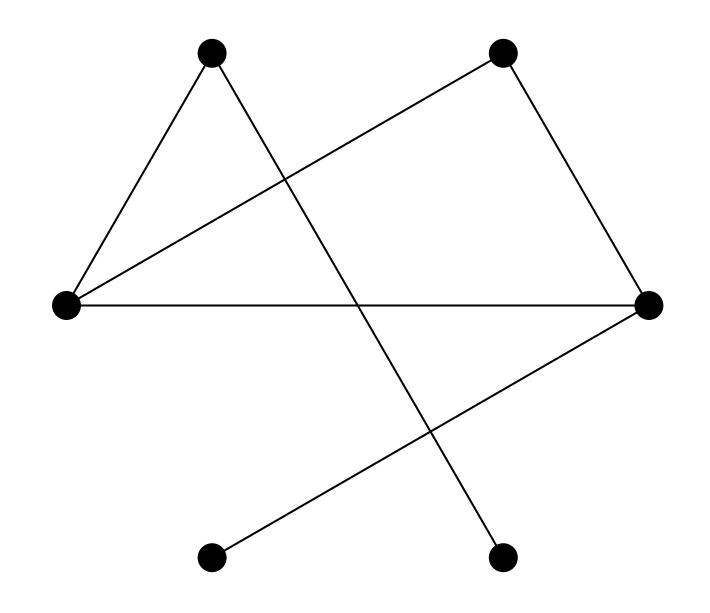




[Duncan-Kahle-Schweinhart, 2021]

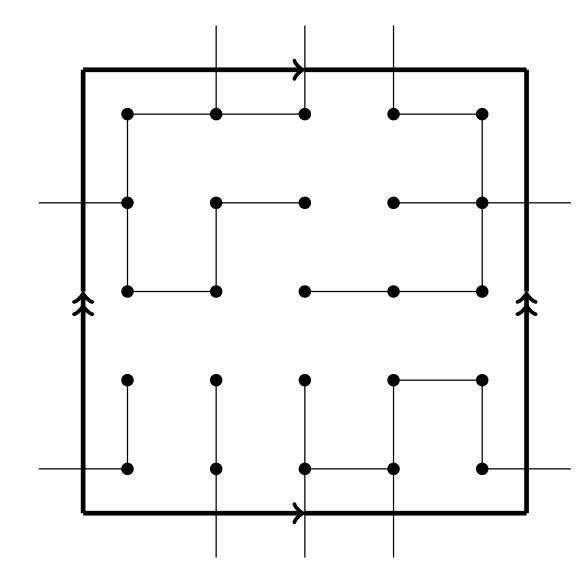


Tapas at Random Topology



Erdo-Renyi Complexes

Geometric Complexes

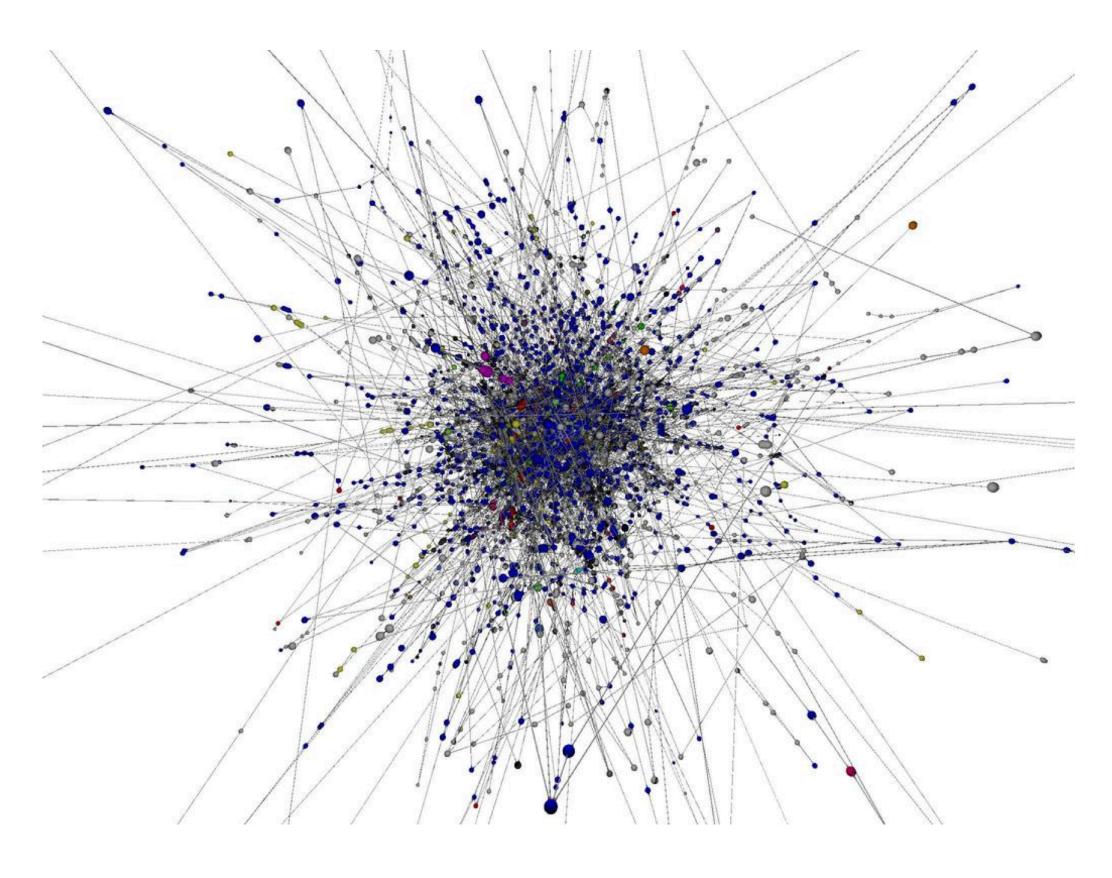


Topological Percolation

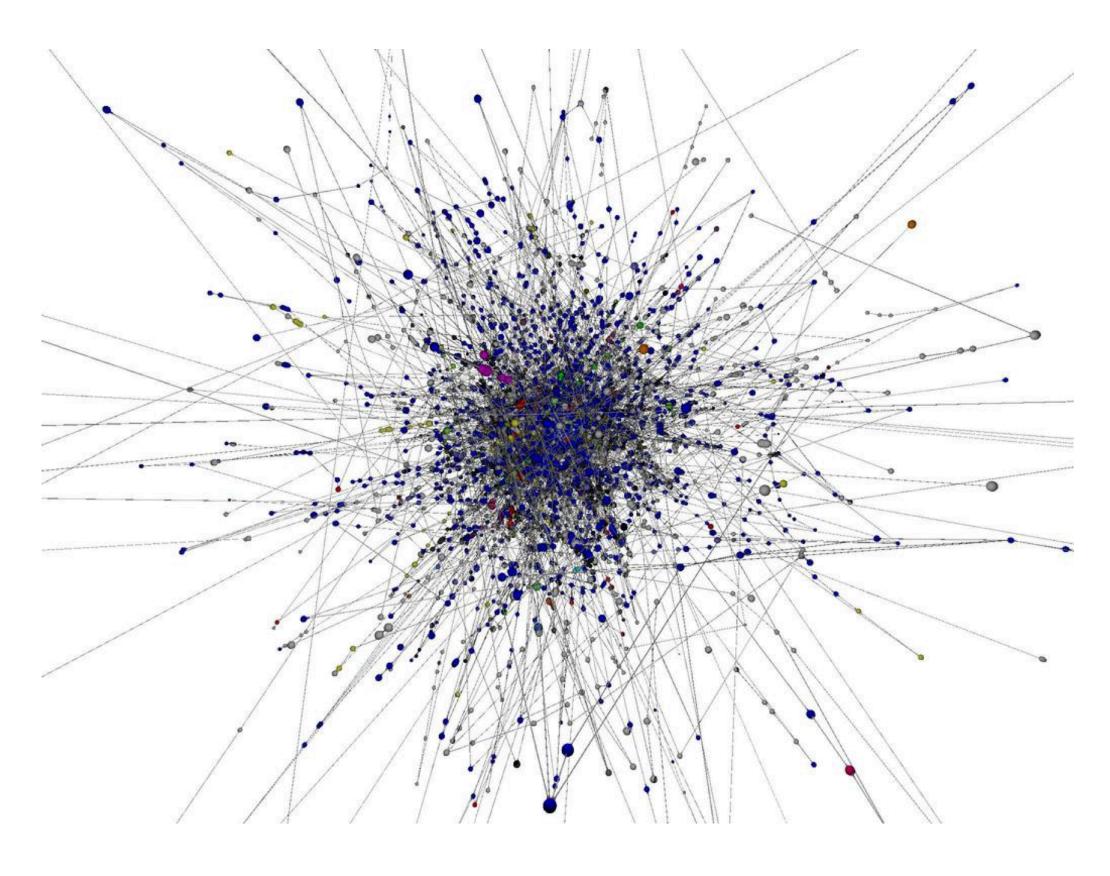
Beyond independence and homogeneity

Independent and identically distributed?

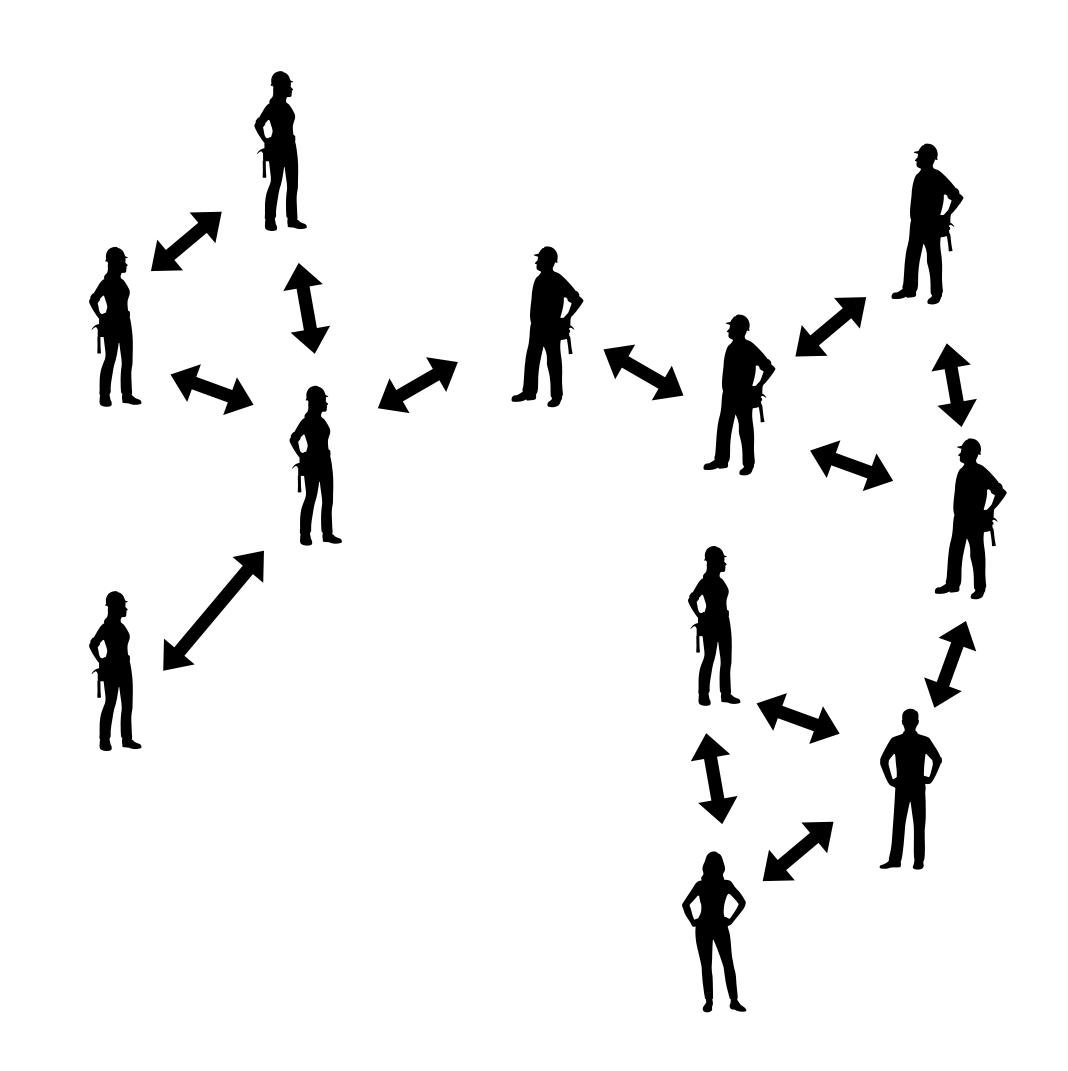
Independent and identically distributed?

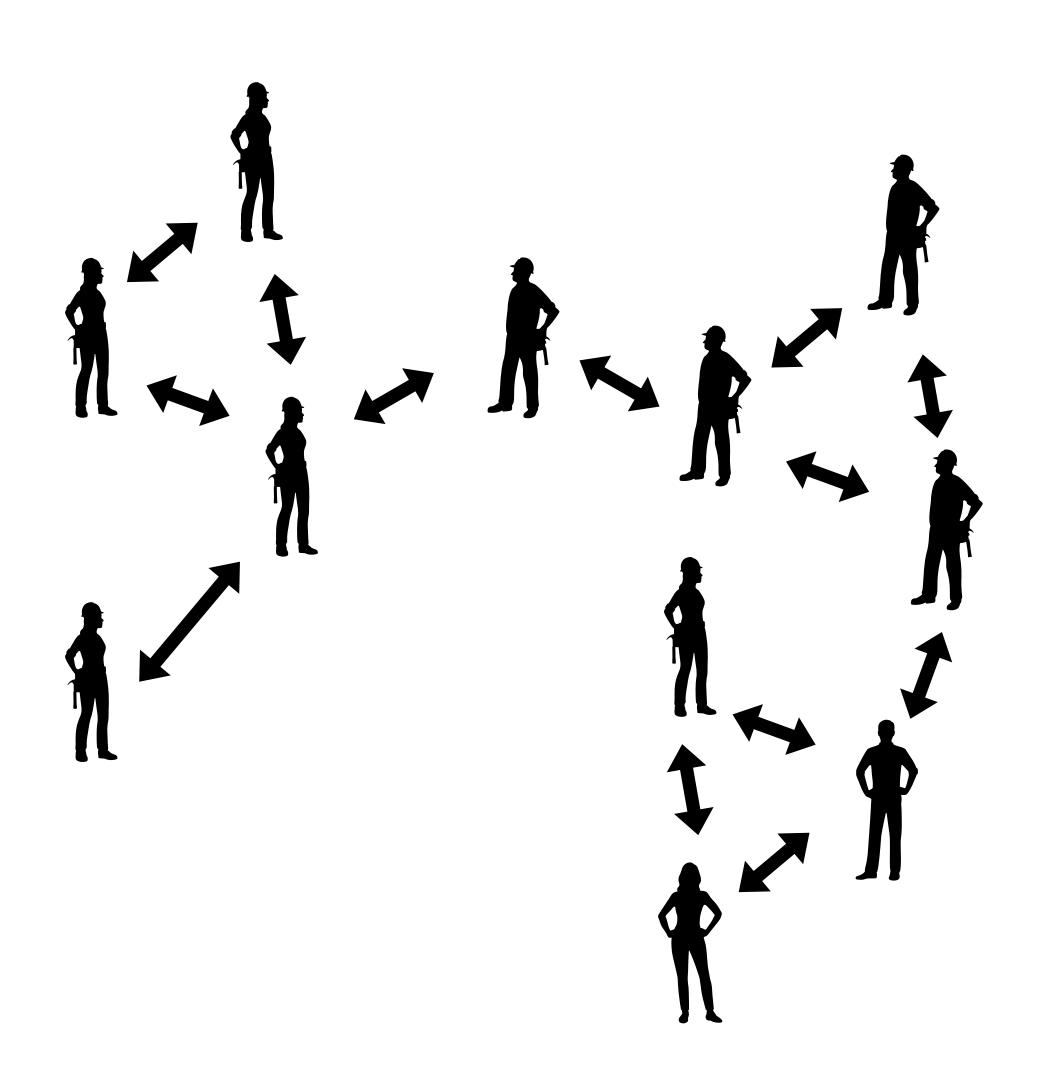


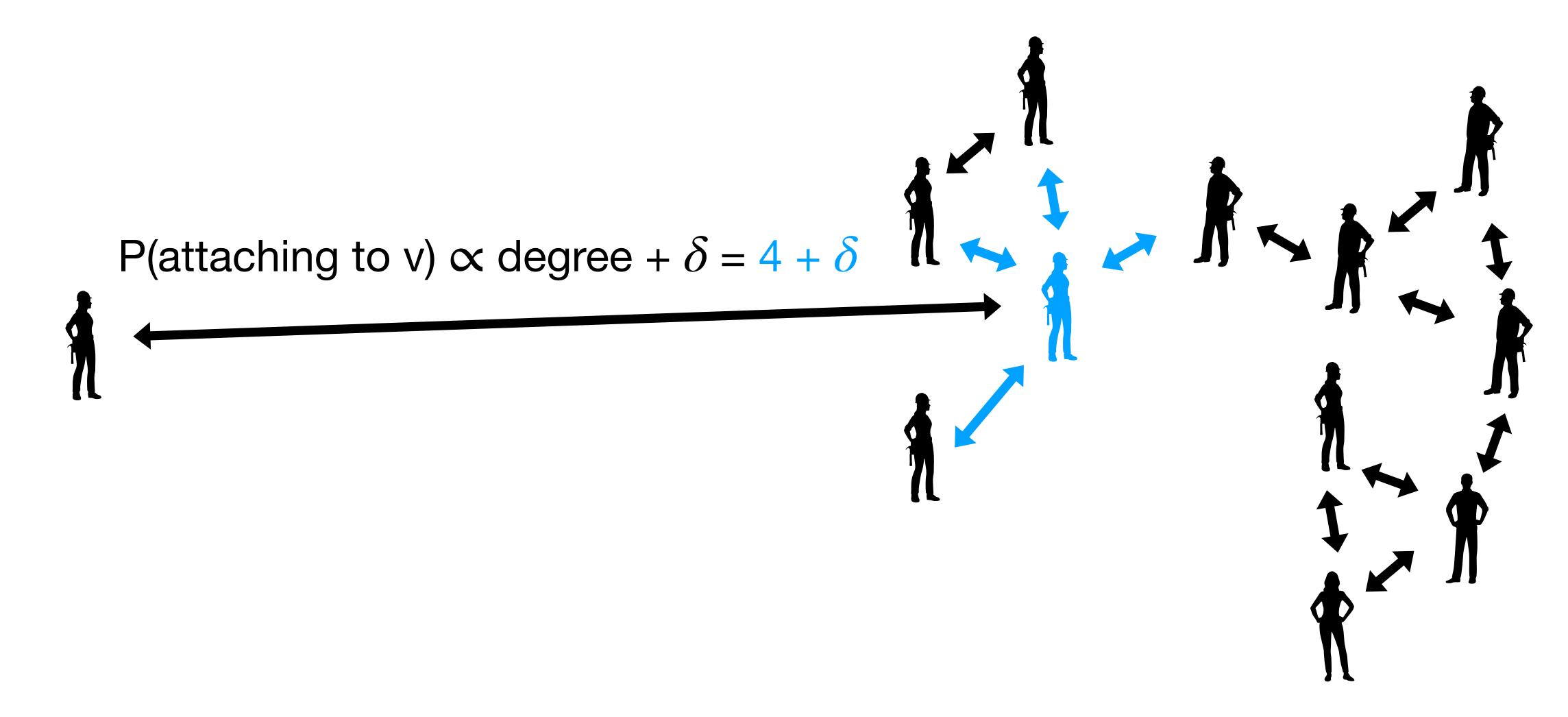
(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)



(Stephen Coast https://www.fractalus.com/steve/stuff/ipmap/)

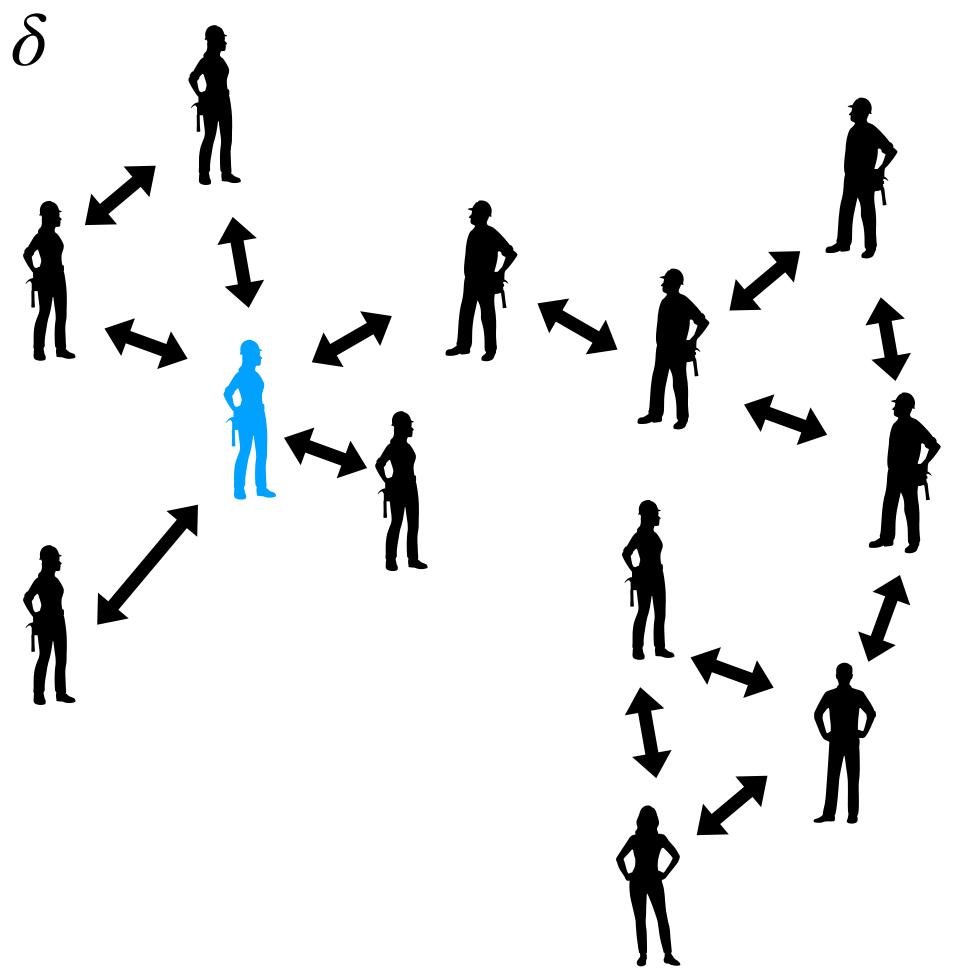






[Albert and Barabasi 1999]

P(attaching to v) \propto degree + a tuning parameter δ



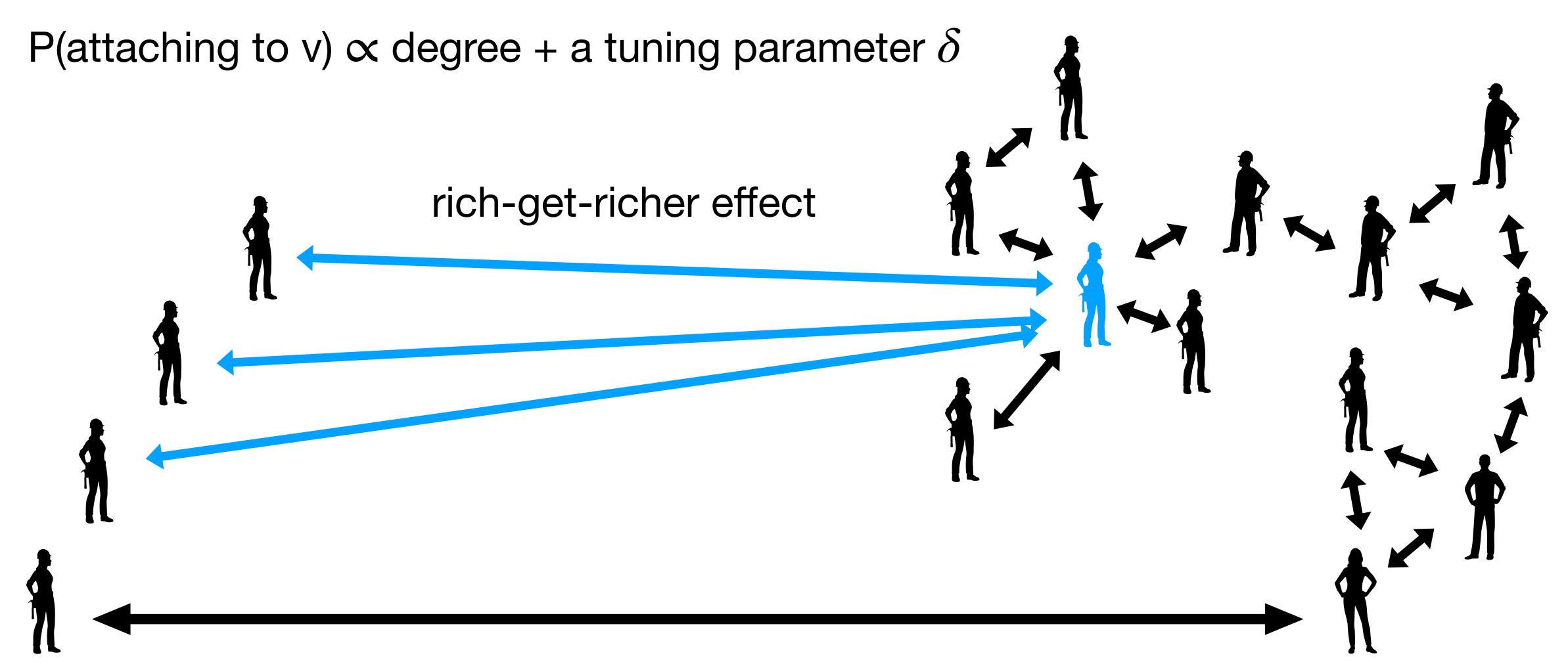
Preferential Attachment

[Albert and Barabasi 1999]

P(attaching to v) \propto degree + a tuning parameter δ

Preferential Attachment

[Albert and Barabasi 1999]



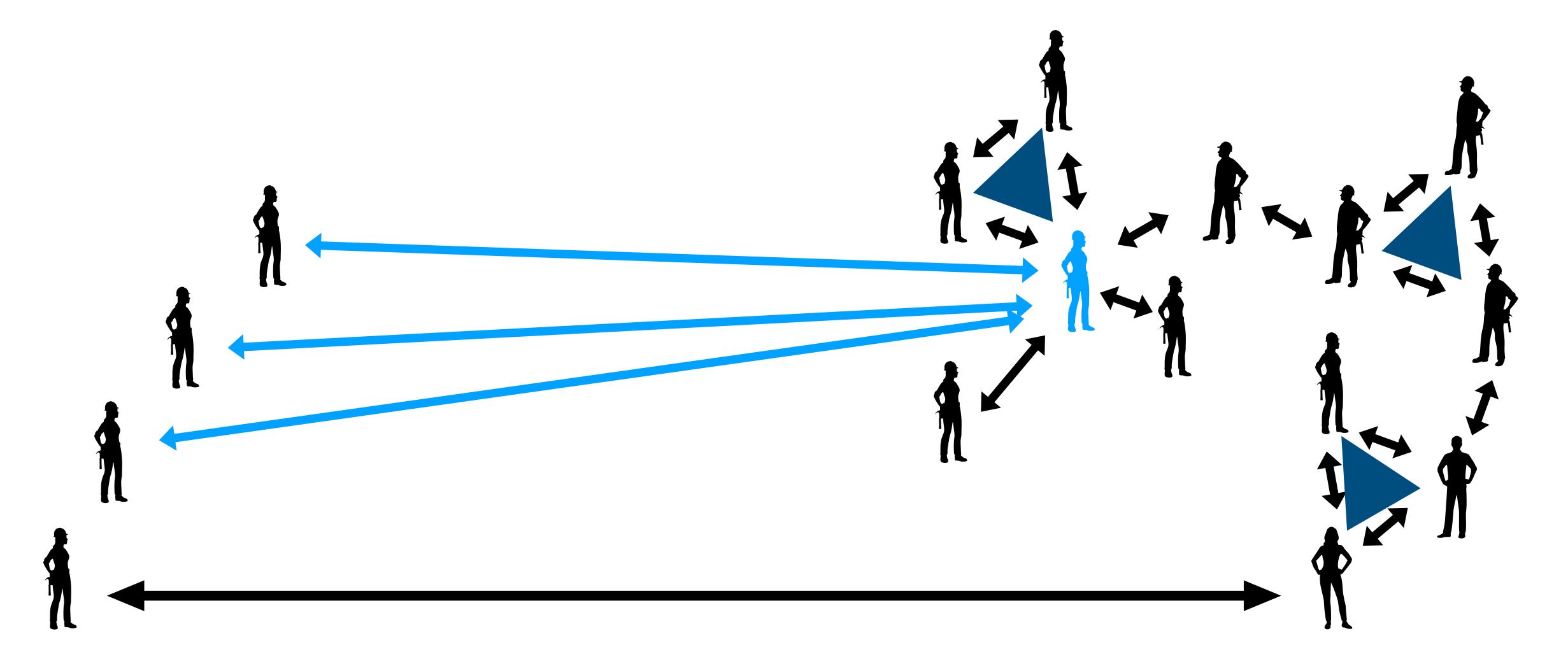
 triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]

- triangle counts and clustering coefficient [Bollobas and Ridden 2002, Prokhorenkova et al 2013]
- subgraph counts [Garavaglia and Steghuis 2019]
- and more...

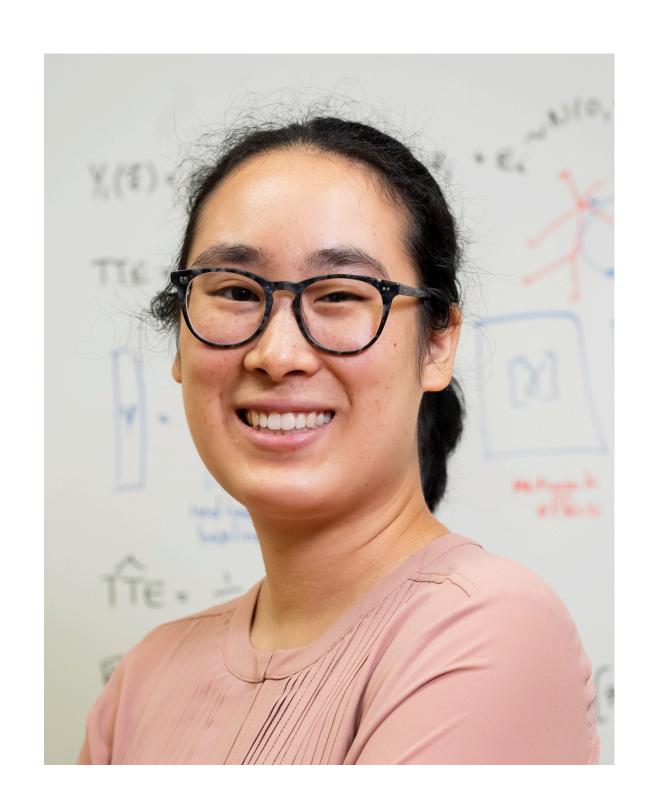
Clique Complex

aka Flag Complex



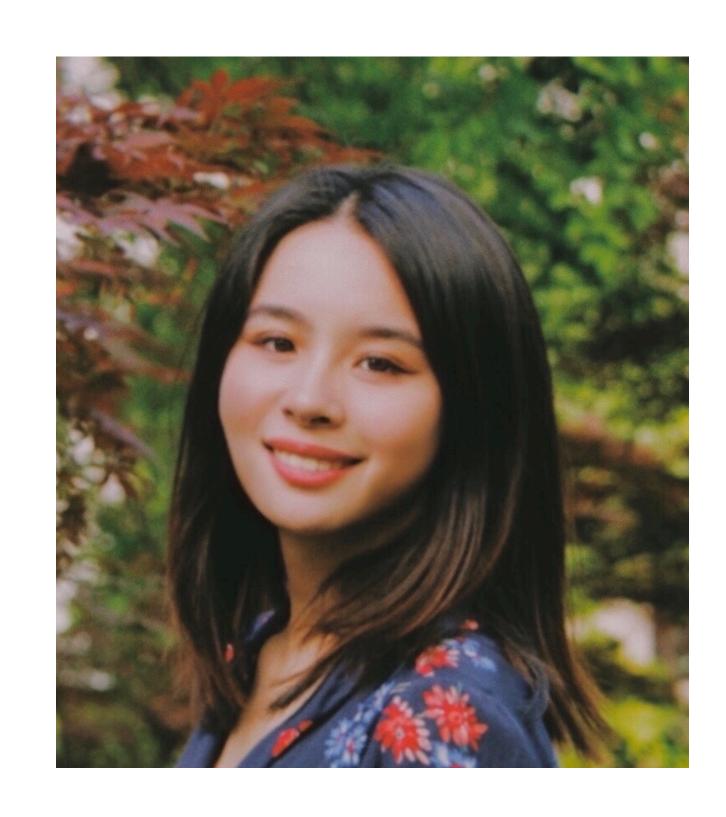
III Topology of Preferential Attachment

My Lovely Collaborators

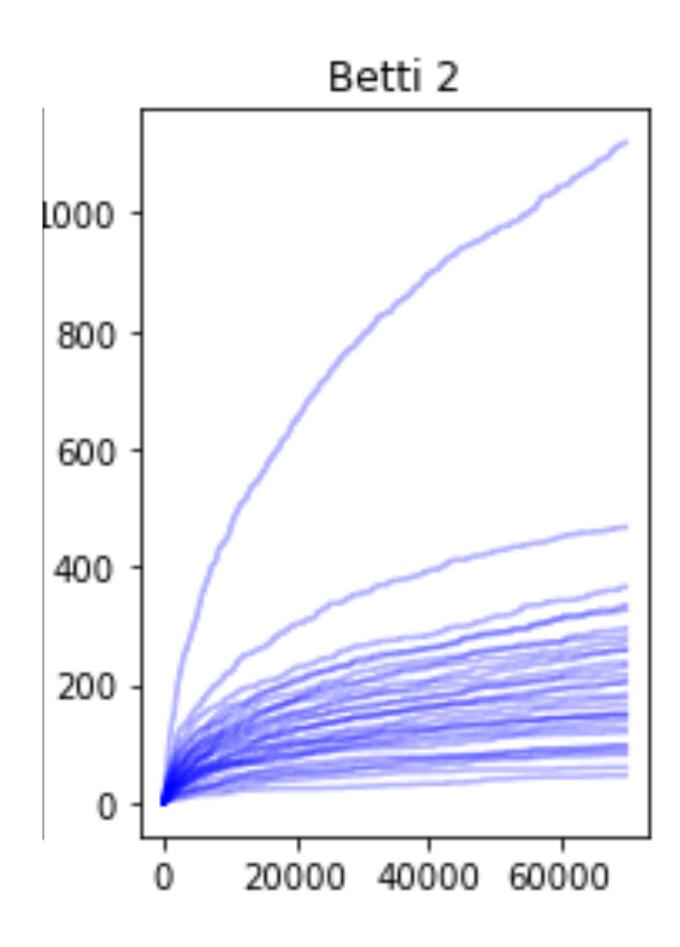


Christina Lee Yu

Gennady Samorodnitsky

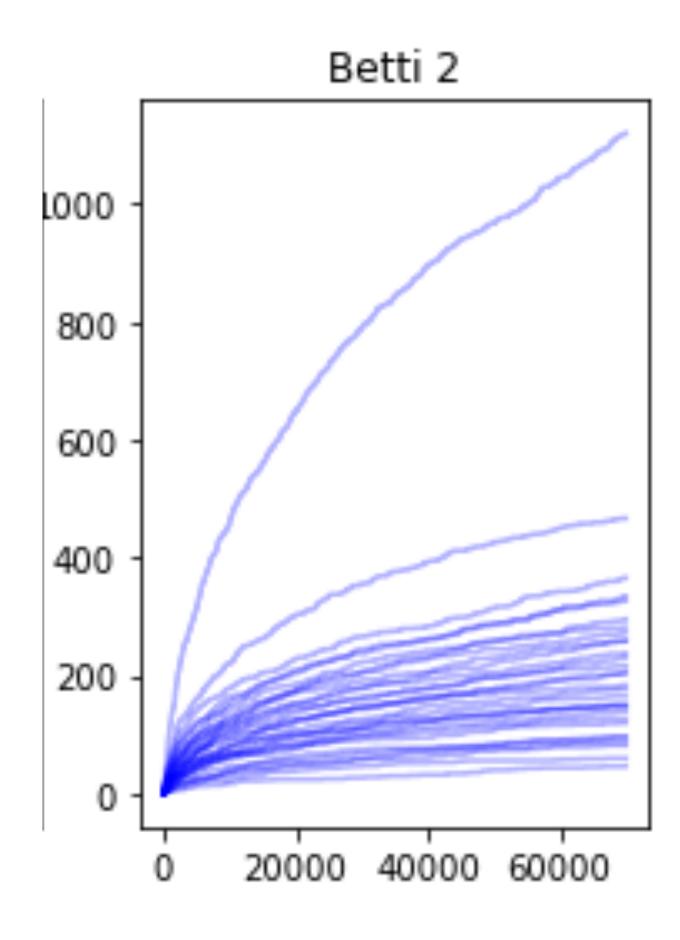


Rongyi He (Caroline)



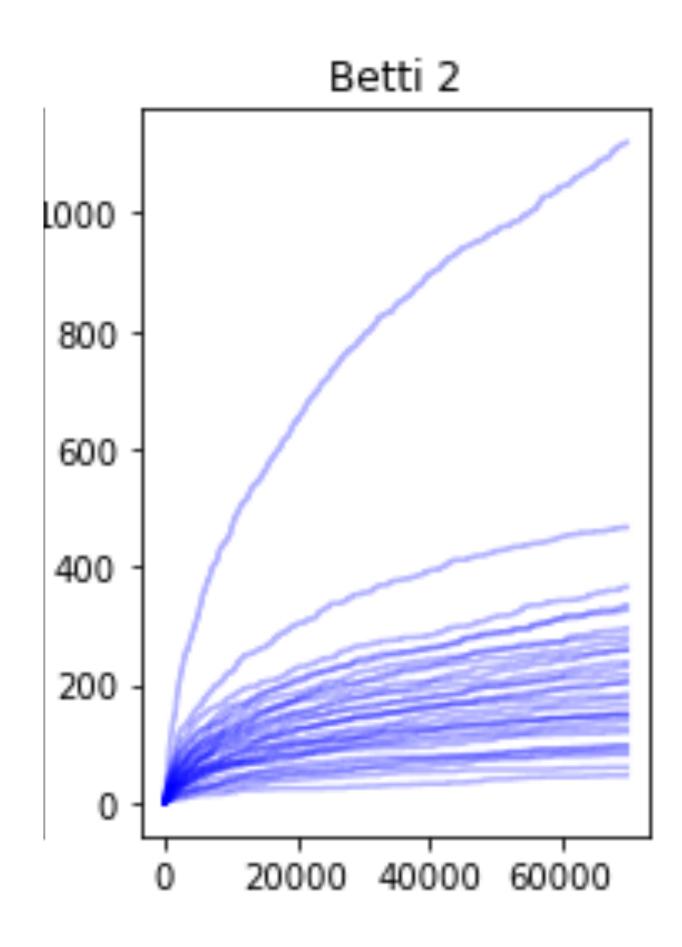
Different curves, different random seeds.
All curves have the same model parameters.

increasing trend



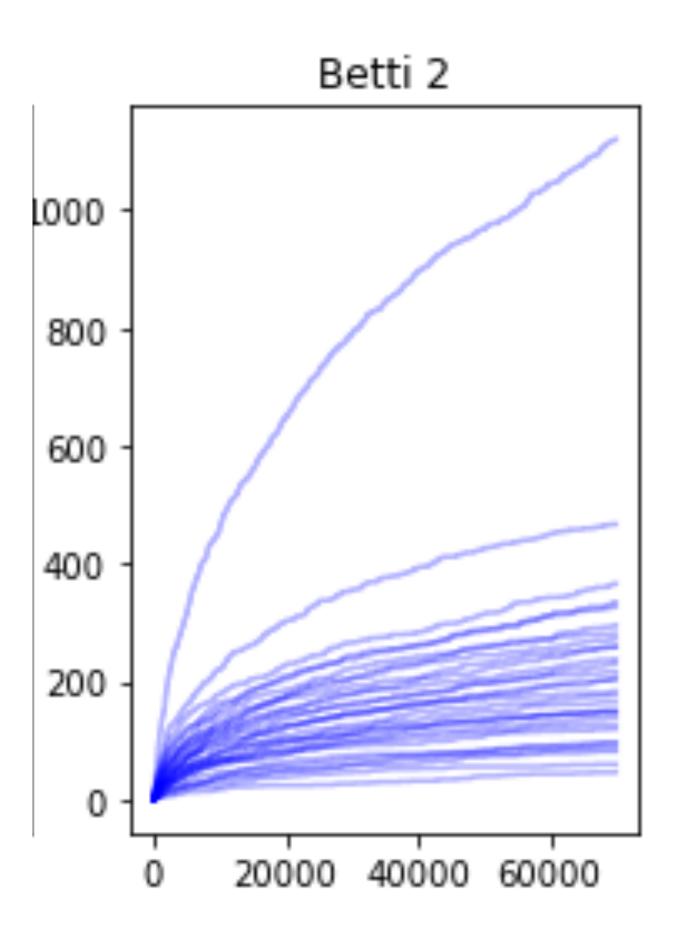
Different curves, different random seeds.
All curves have the same model parameters.

- increasing trend
- concave growth



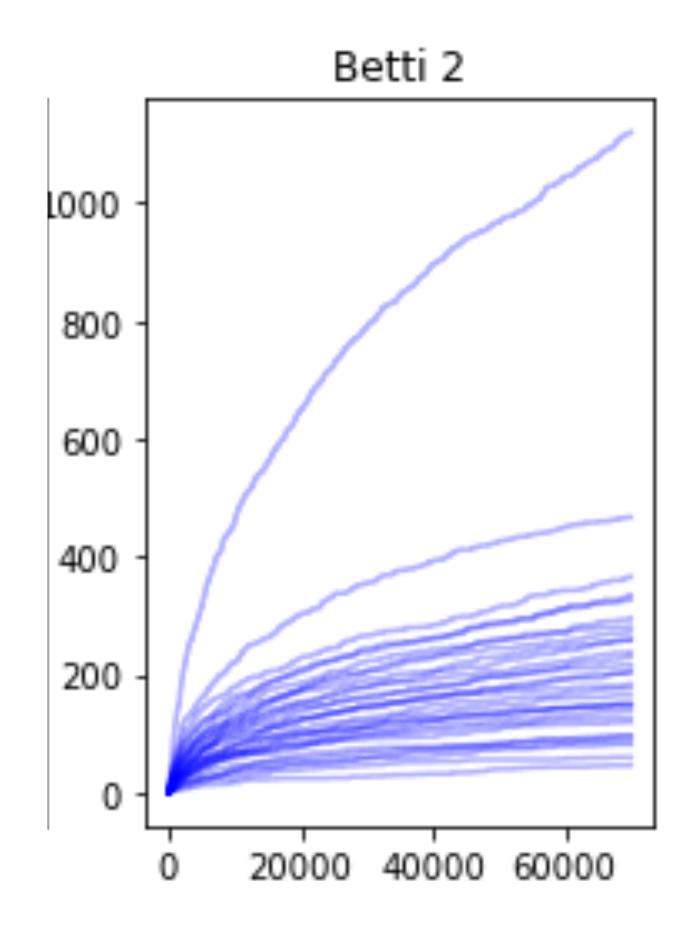
Different curves, different random seeds.
All curves have the same model parameters.

- increasing trend
- concave growth
- outlier

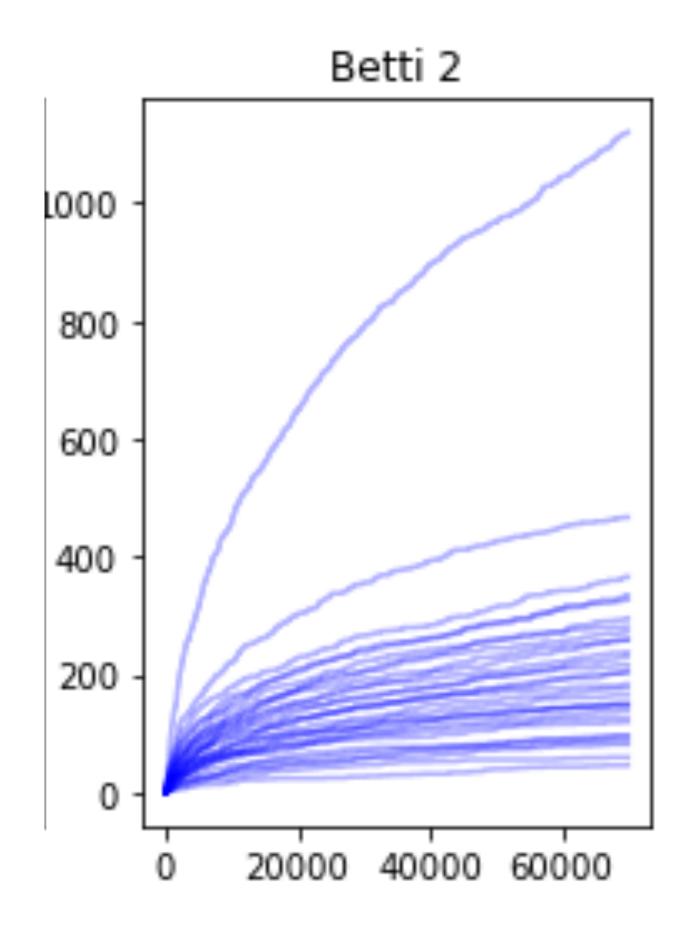


Different curves, different random seeds.
All curves have the same model parameters.

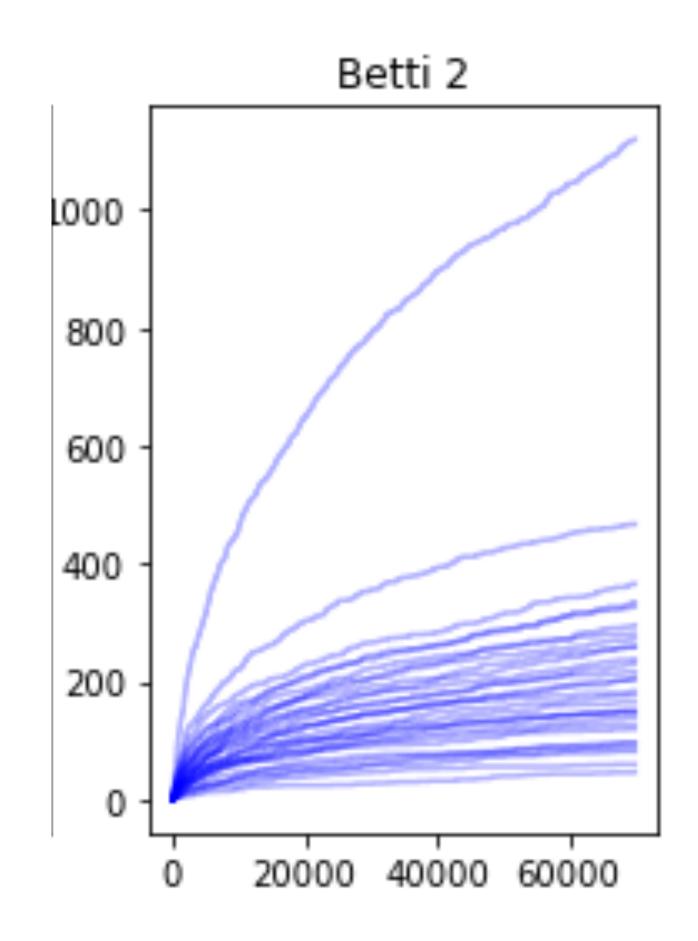
- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength.

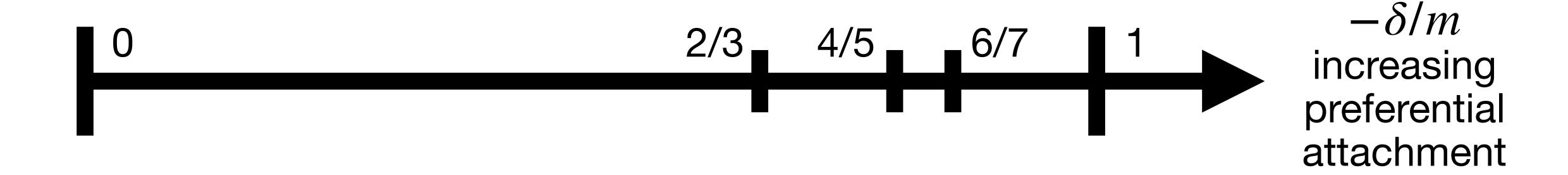


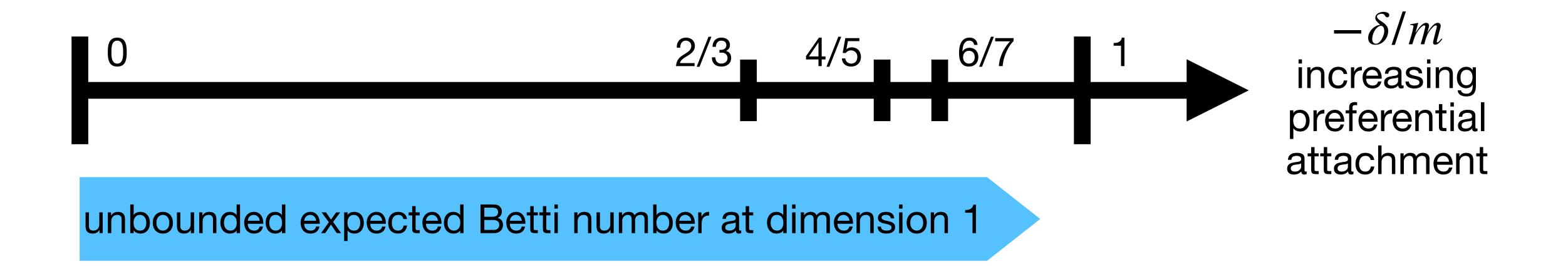
- $c(\text{num of nodes}^{1-4x}) \leq E[\beta_2] \leq C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength.
 - If 1 4x < 0, then $E[\beta_2] \le C$.

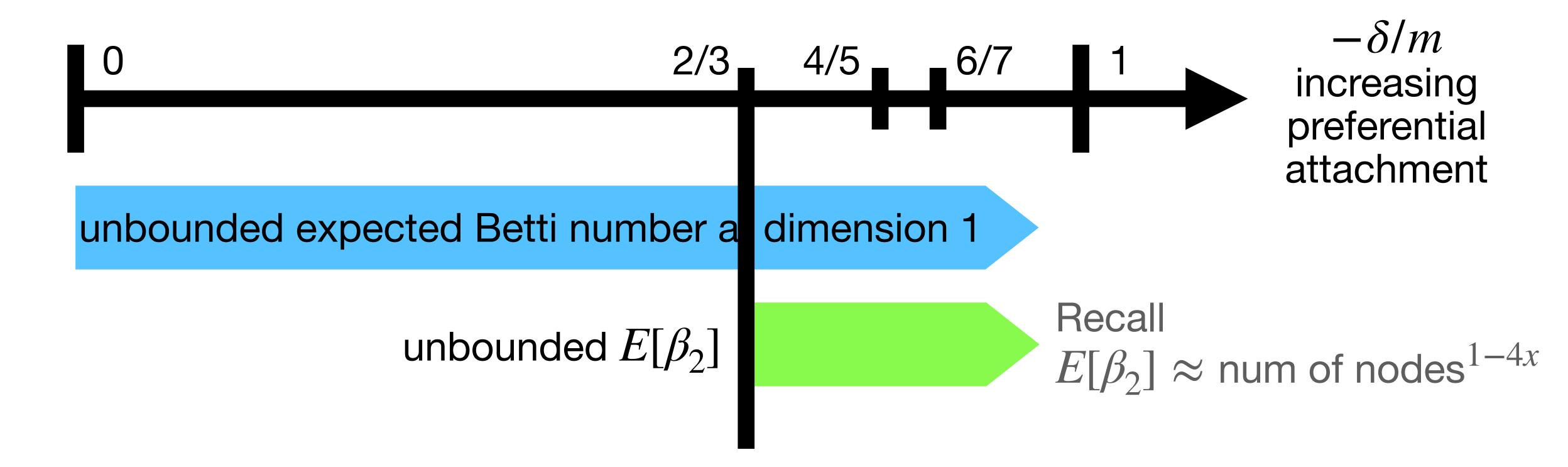


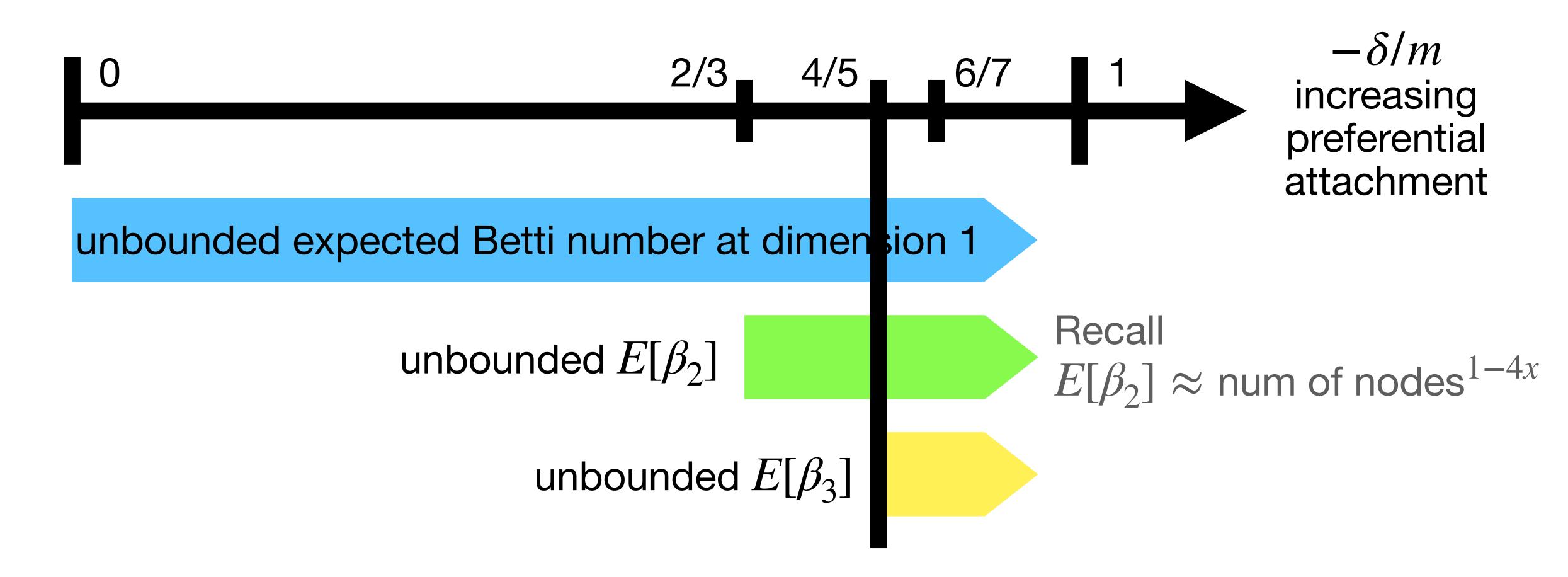
- $c(\text{num of nodes}^{1-4x}) \le E[\beta_2] \le C(\text{num of nodes}^{1-4x})$
 - $x \in (0,1/2)$ depends on the preferential attachment strength
 - If 1 4x < 0, then $E[\beta_2] \le C$.
- $c(\text{num of nodes}^{1-2qx}) \leq E[\beta_q] \leq C(\text{num of nodes}^{1-2qx})$ for $q \geq 2$.

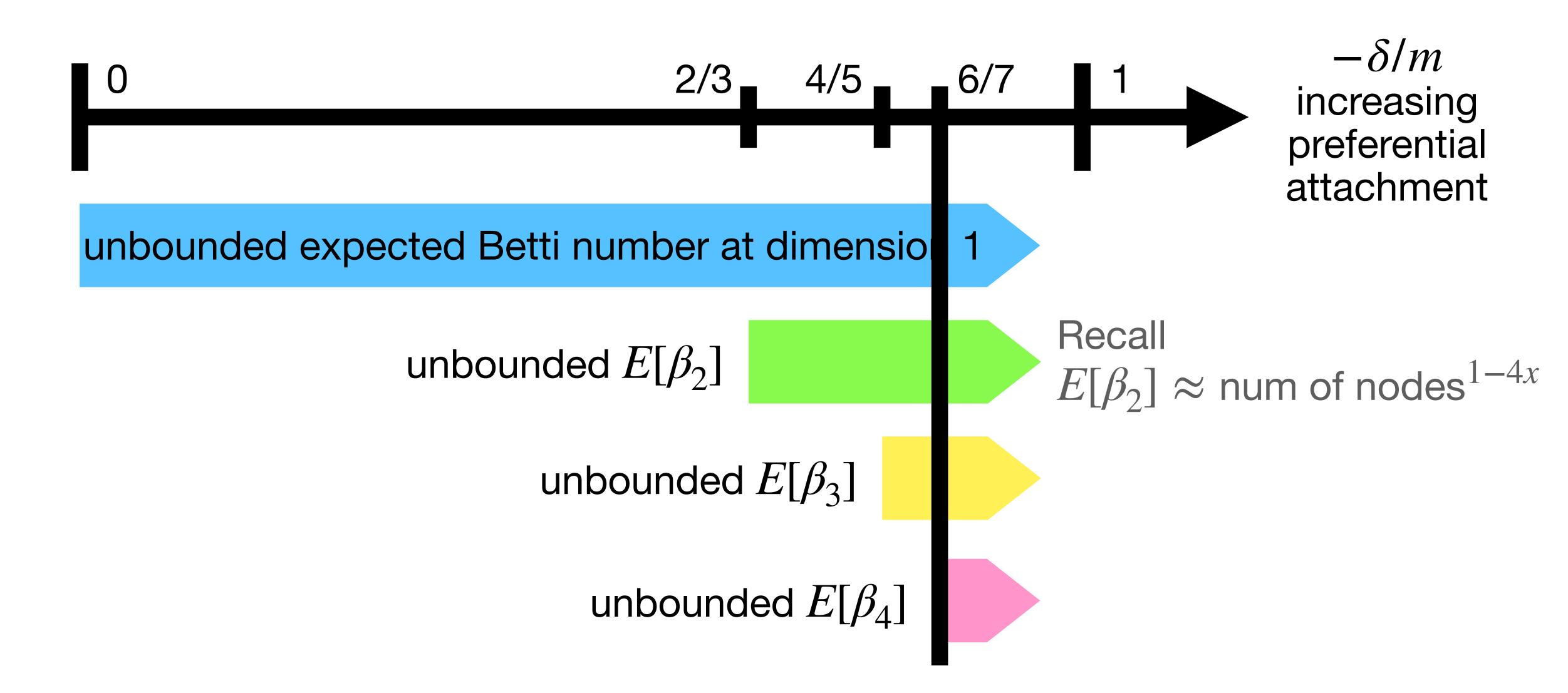


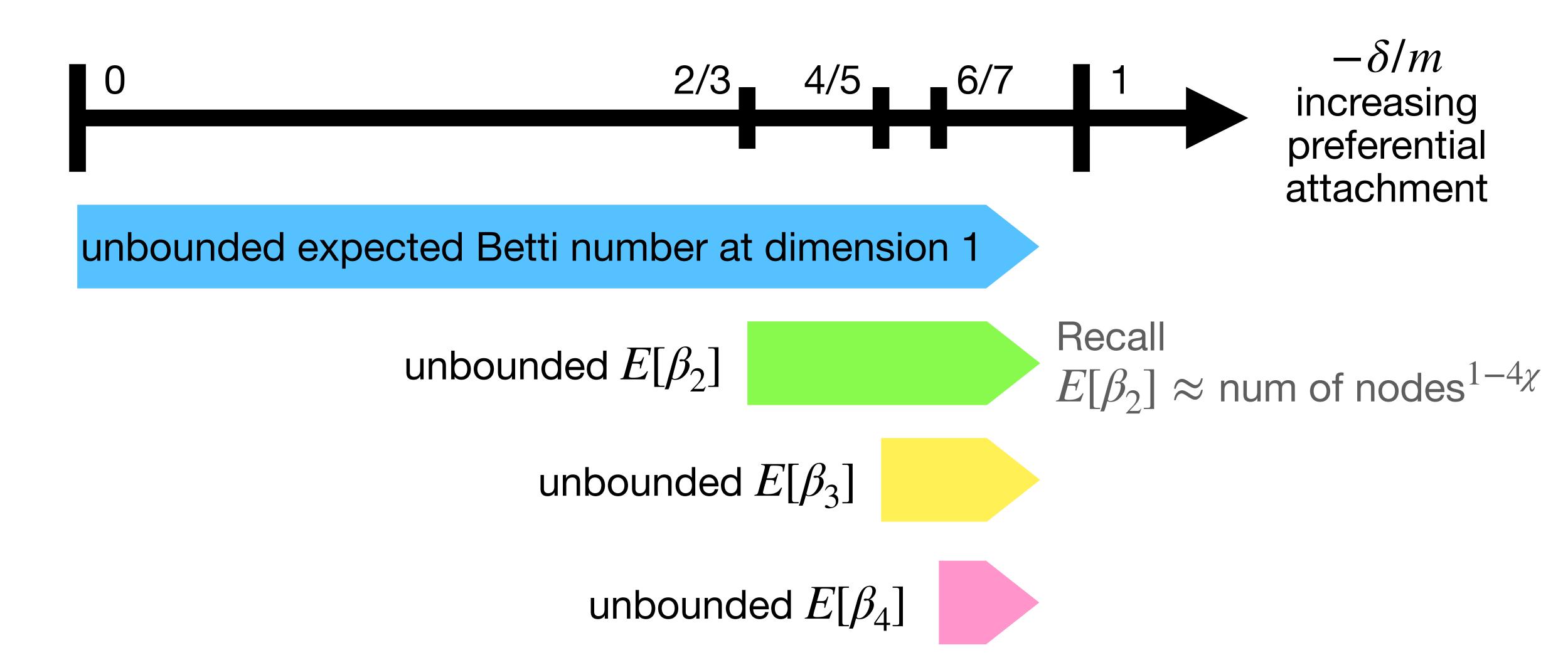






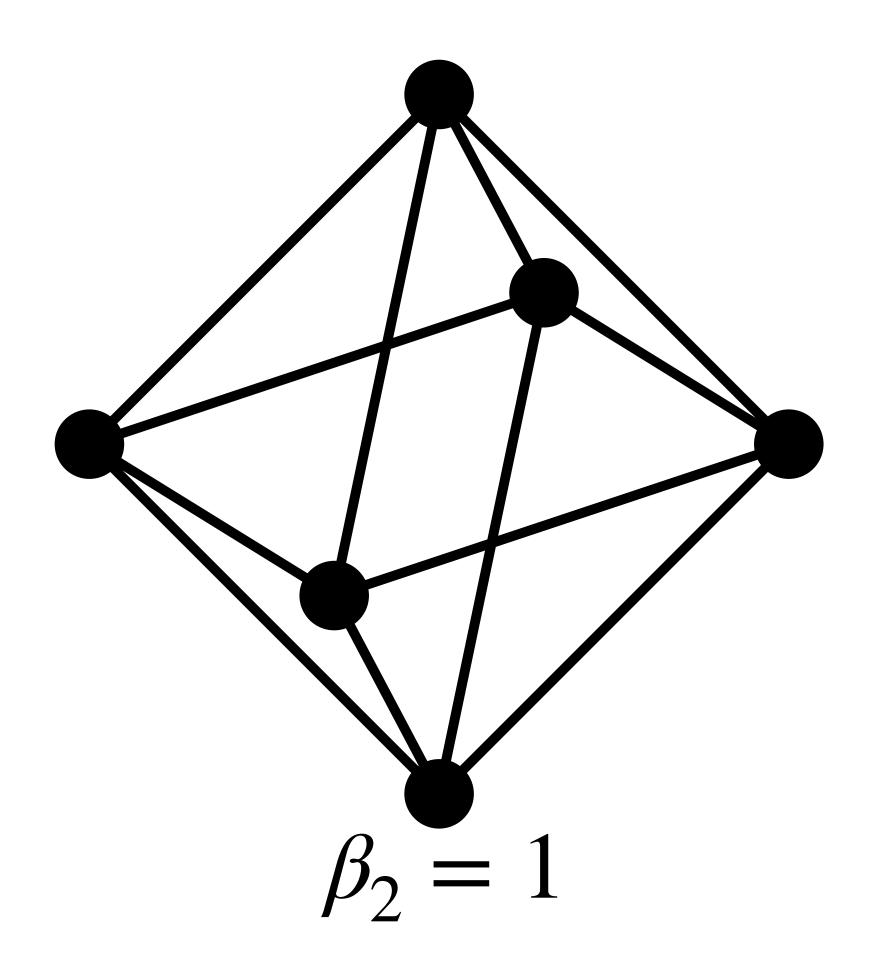




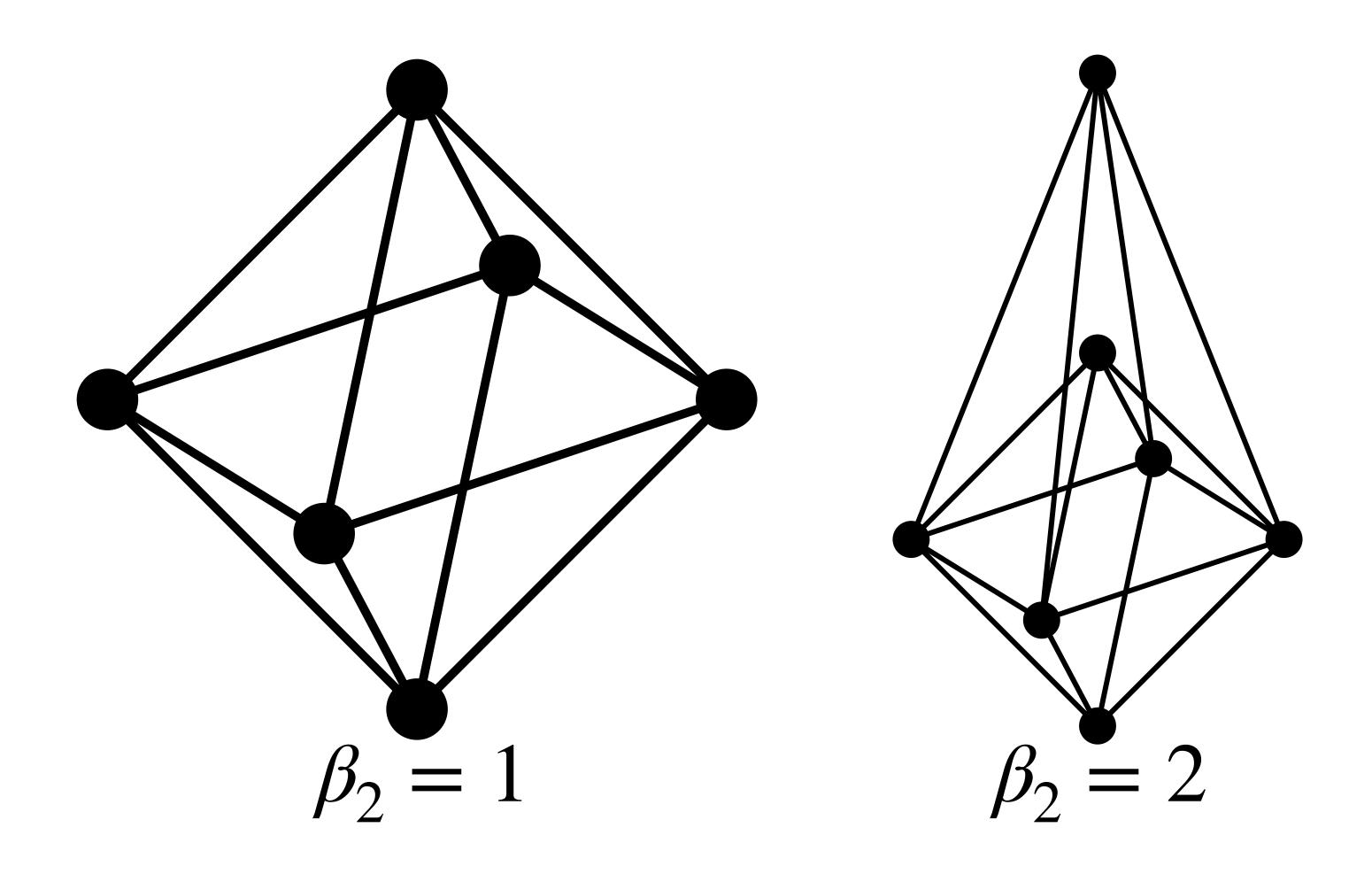


Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ Proof?

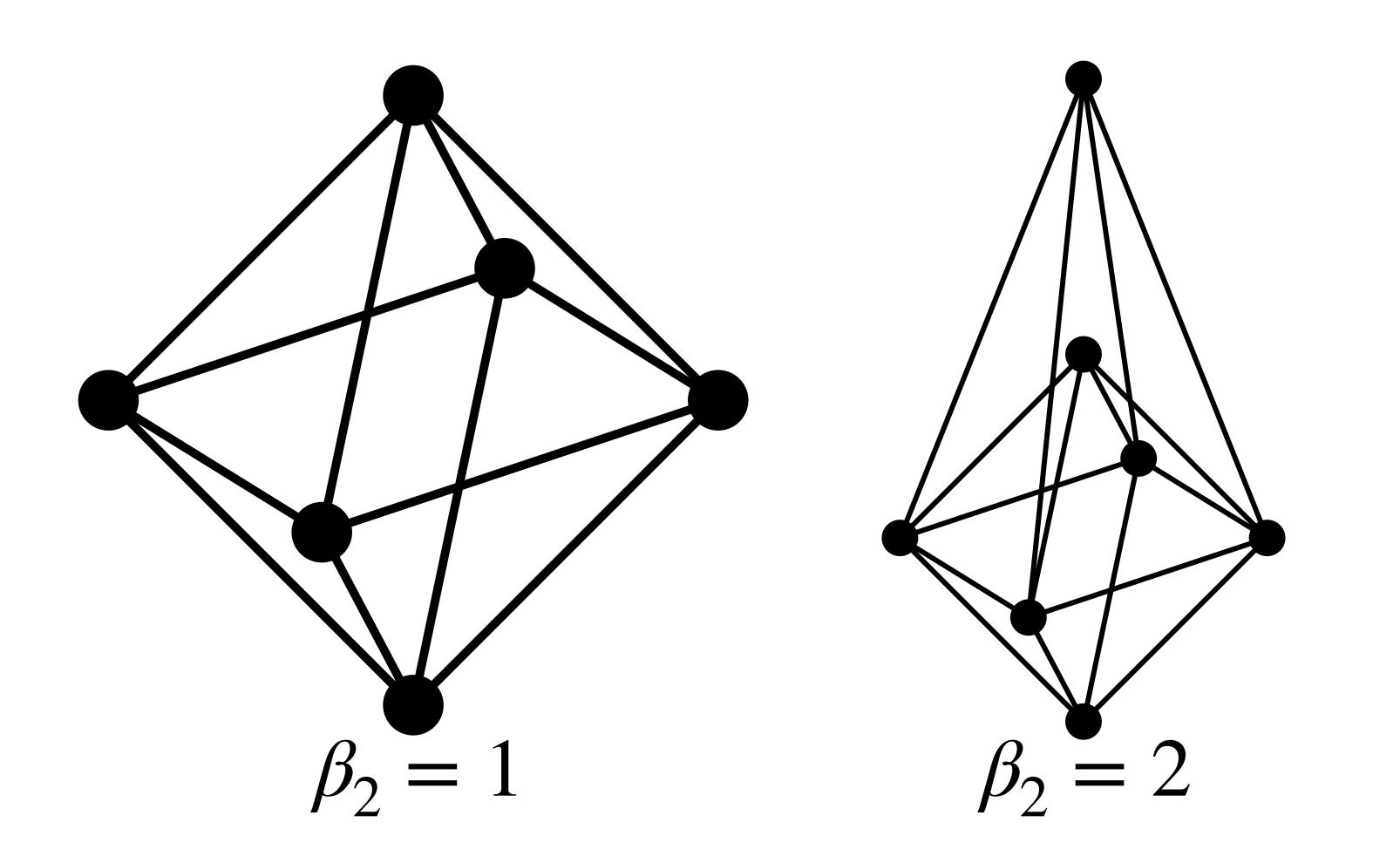
Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$

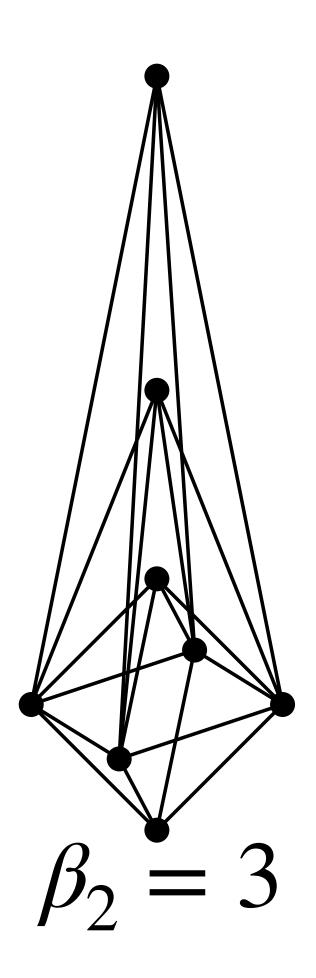


Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$



Proof of $E[\beta_2] \approx \text{num of nodes}^{1-4x}$





Need homological algebra to relate Betti numbers with counts

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]

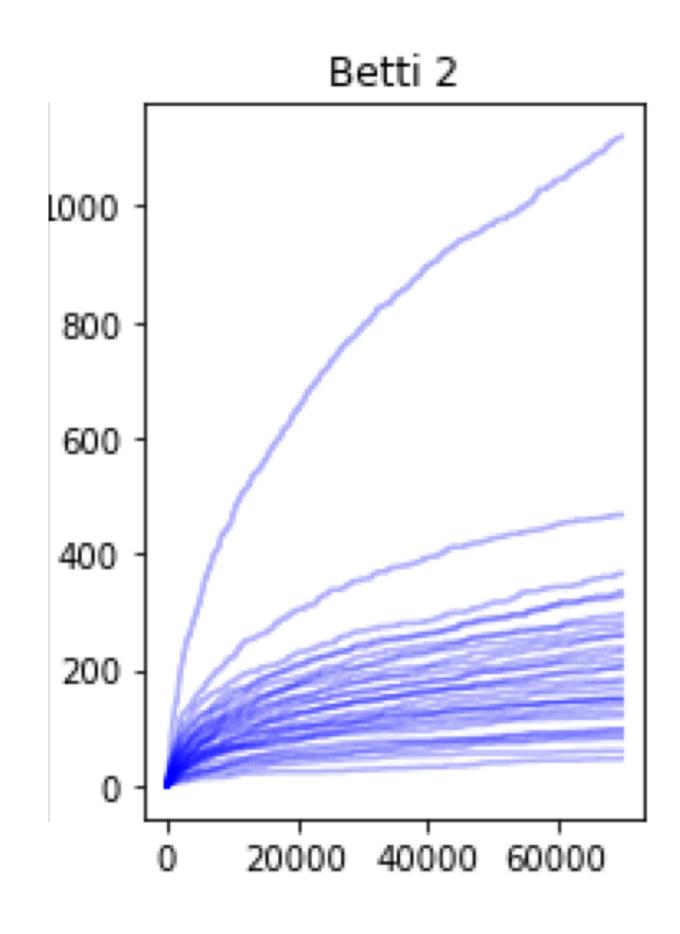
- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra

- Need homological algebra to relate Betti numbers with counts
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results in the language of homological algebra
- Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

•

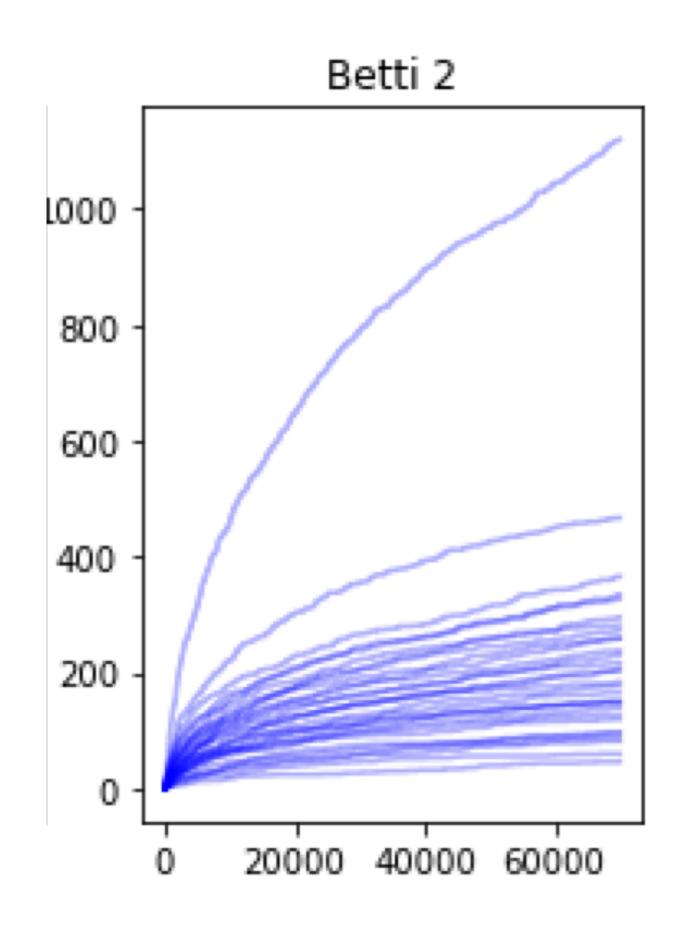
Theorem: $E[\beta_2] \approx \text{num of nodes}^{1-4x}$ In practice???

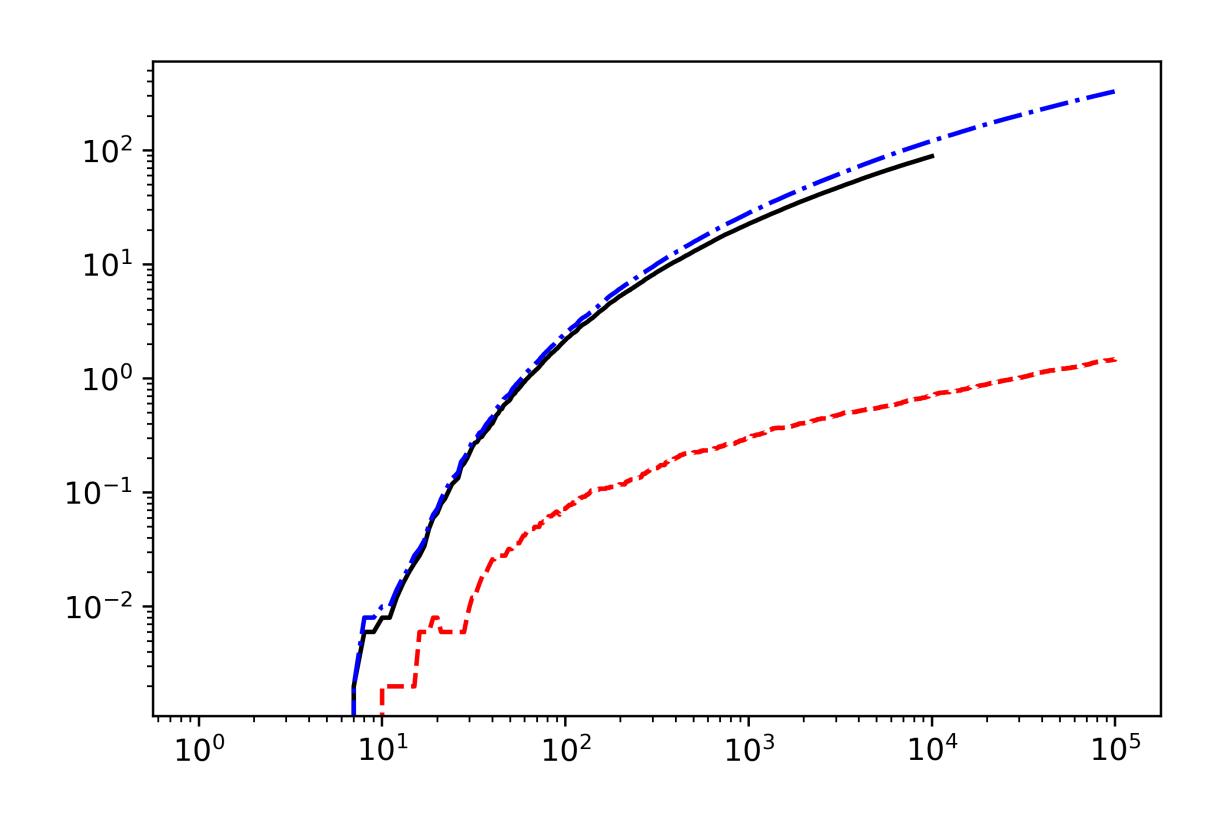
$E[\beta_2] \approx \text{num of nodes}^{1-4x}$



$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

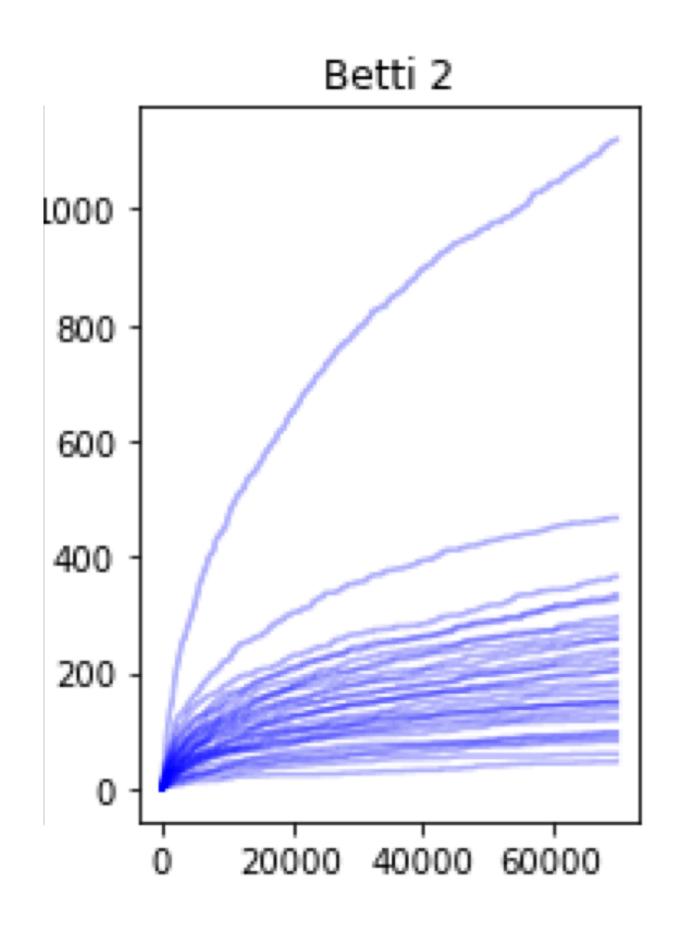
 $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$

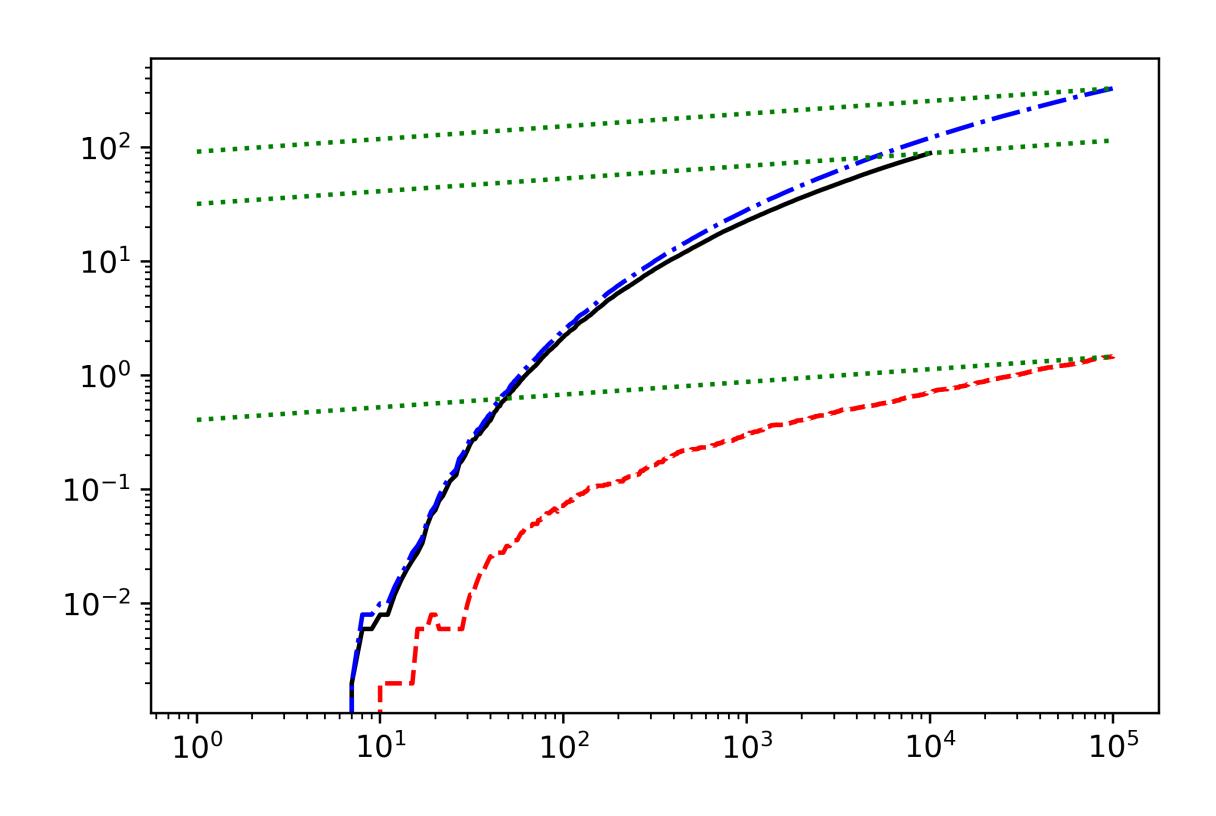




$E[\beta_2] \approx \text{num of nodes}^{1-4x}$

 $\log E[\beta_2] \approx (1 - 4x)\log(\text{num of nodes})$





V. What lies ahead

order of magnitude of expected Betti numbers

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

simplicial preferential attachment?

parameter estimation?

homotopy connectedness of the infinite complex?

order of magnitude of expected Betti numbers

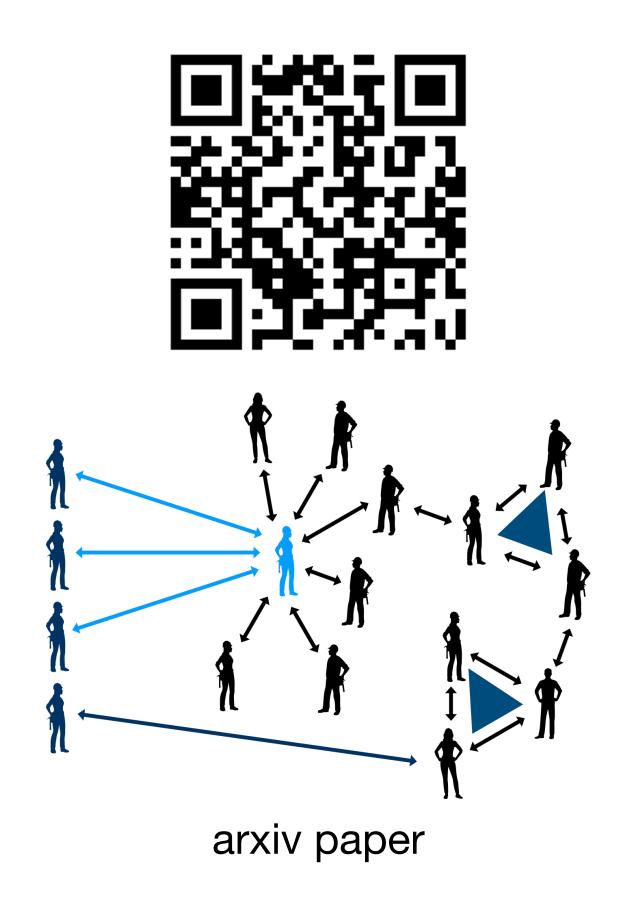
simplicial preferential attachment?

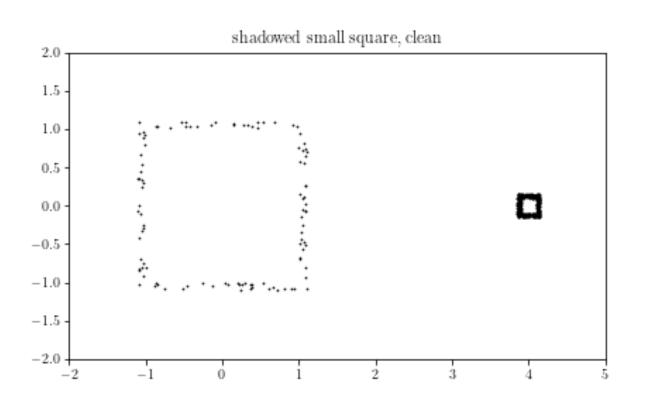
other non-homogeneous complexes?

What did we learn today?

- Random topology is cool.
- Preferential attachment graph has interesting topology.
- More interesting things are waiting to be discovered.

Chunyin Siu <u>cs2323@cornell.edu</u> Cornell University

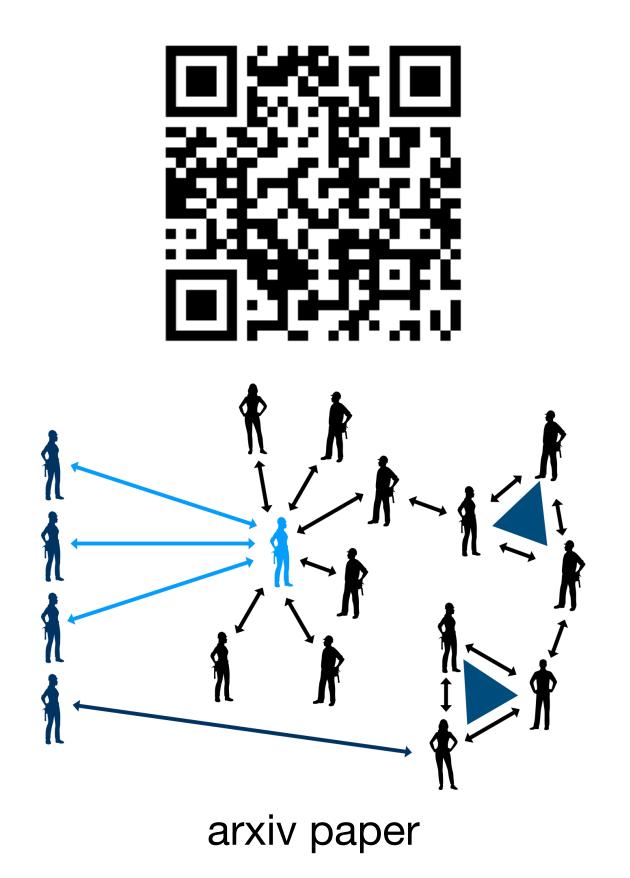




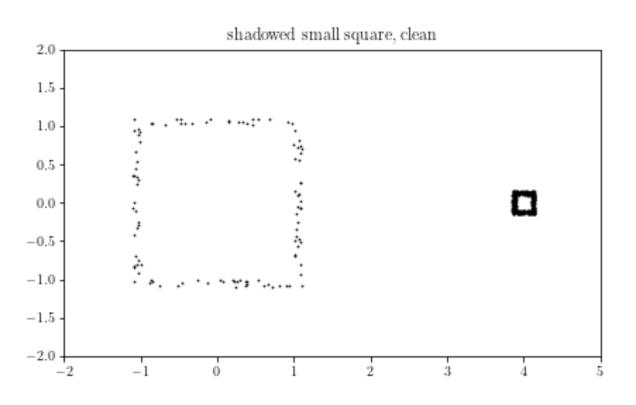
my video about small holes

Thank you!

Chunyin Siu Cornell University



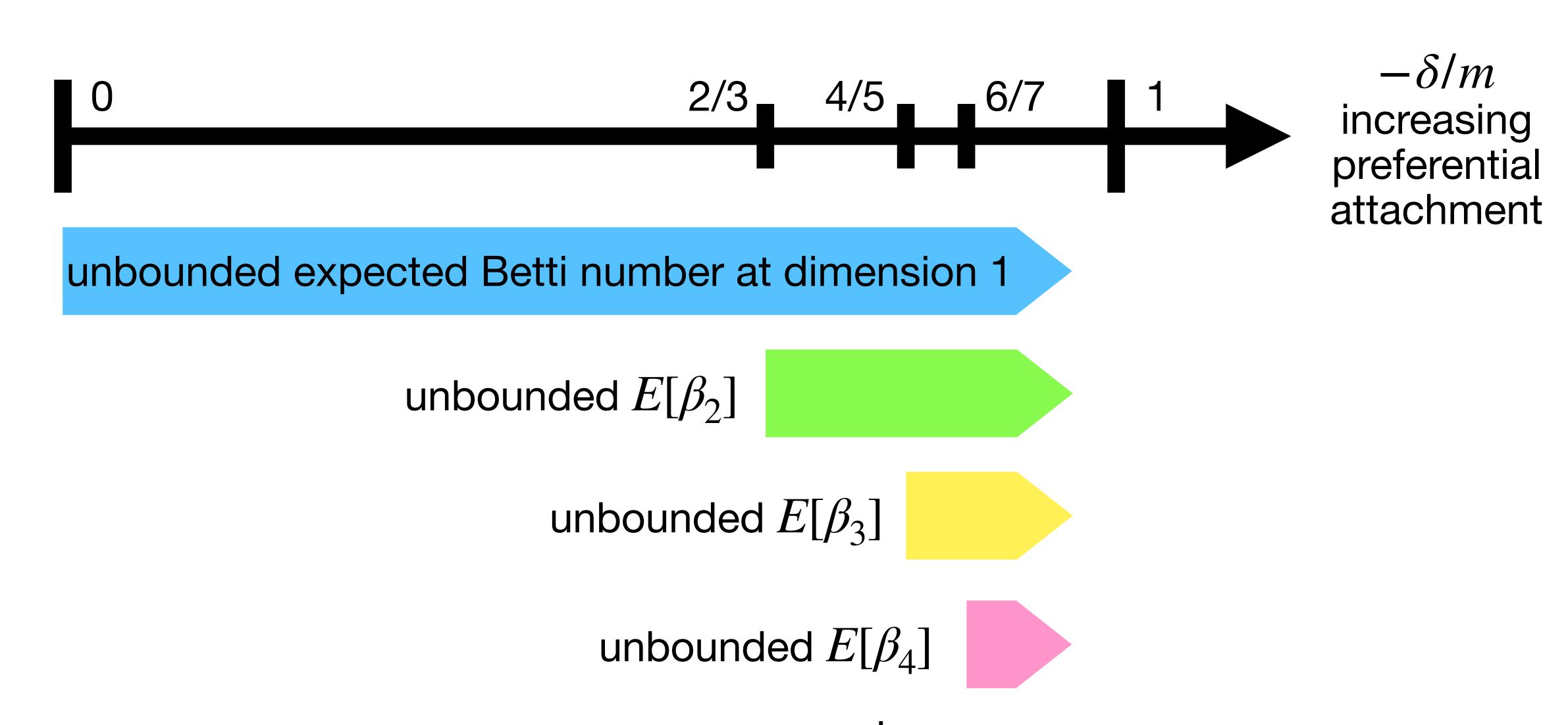
c-siu.github.io cs2323@cornell.edu



my video about small holes

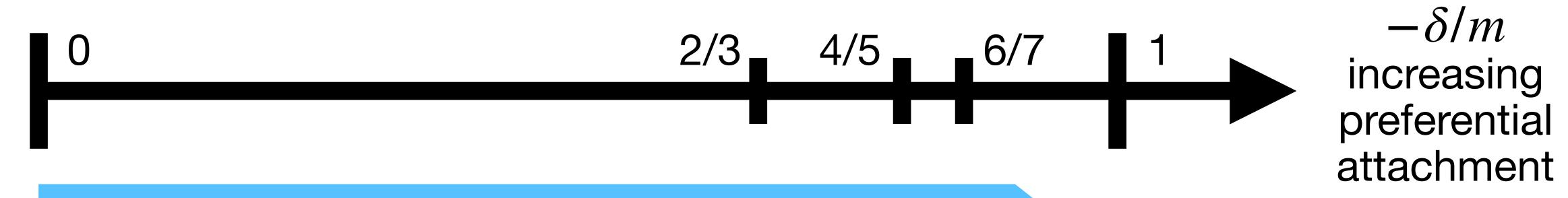
Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node



Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node



unbounded expected Betti number at dimension 1

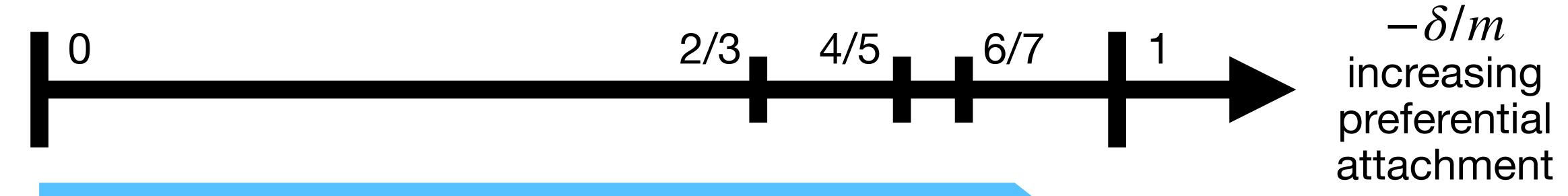
$$\pi_1(X_\infty) \cong 0$$
, unbounded $E[\beta_2]$

$$\pi_2(X_\infty) \cong 0$$
, unbounded $E[\beta_3]$

$$\pi_3(X_\infty) \cong 0$$
, unbounded $E[\beta_4]$

Phase transition

Recall P(attaching to v) \propto degree + δ m = number of edges per new node



unbounded expected Betti number at dimension 1

$$\pi_1(X_\infty)\cong 0$$
, unbounded $E[eta_2]$

$$\pi_2(X_\infty) \cong 0$$
, unbounded $E[\beta_3]$

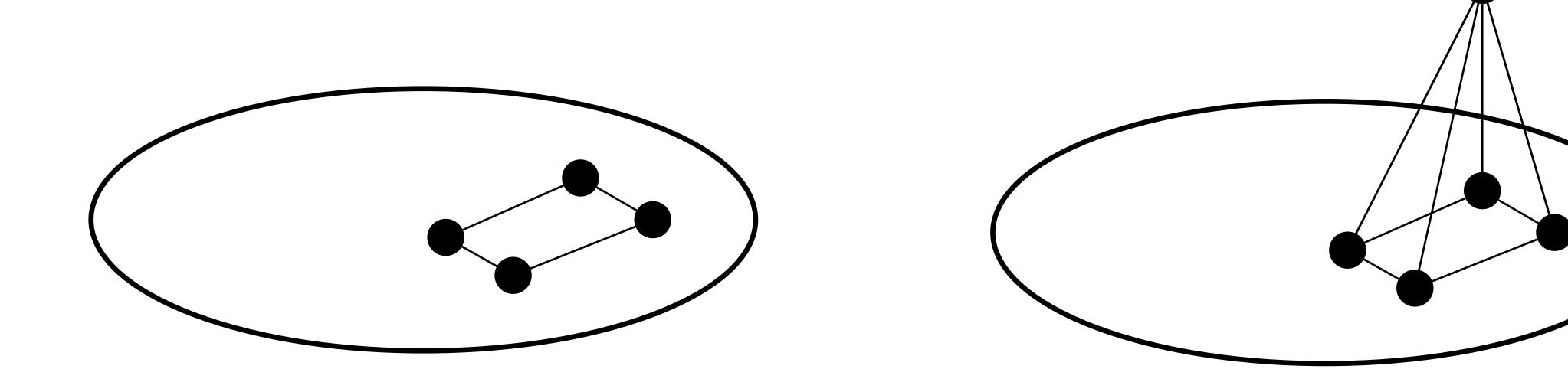
$$\pi_3(X_\infty) \cong 0$$
, unbounded $E[\beta_4]$

:

Need homological algebra to relate Betti numbers with counts

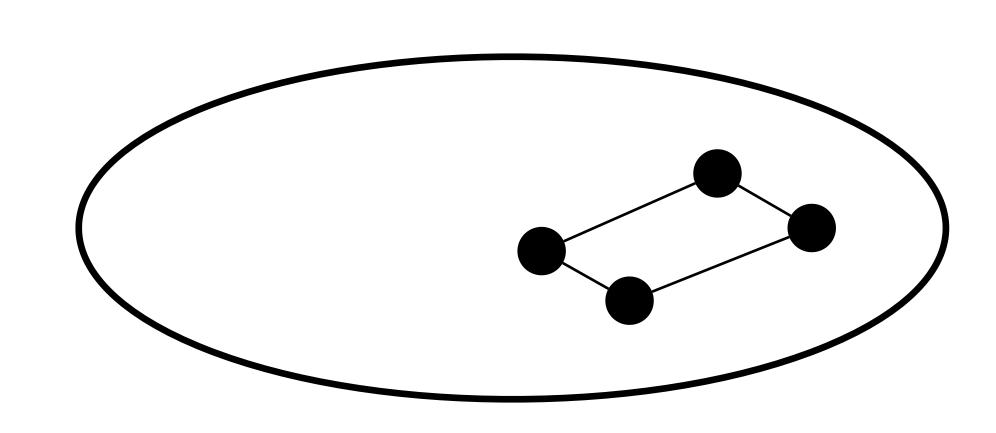
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

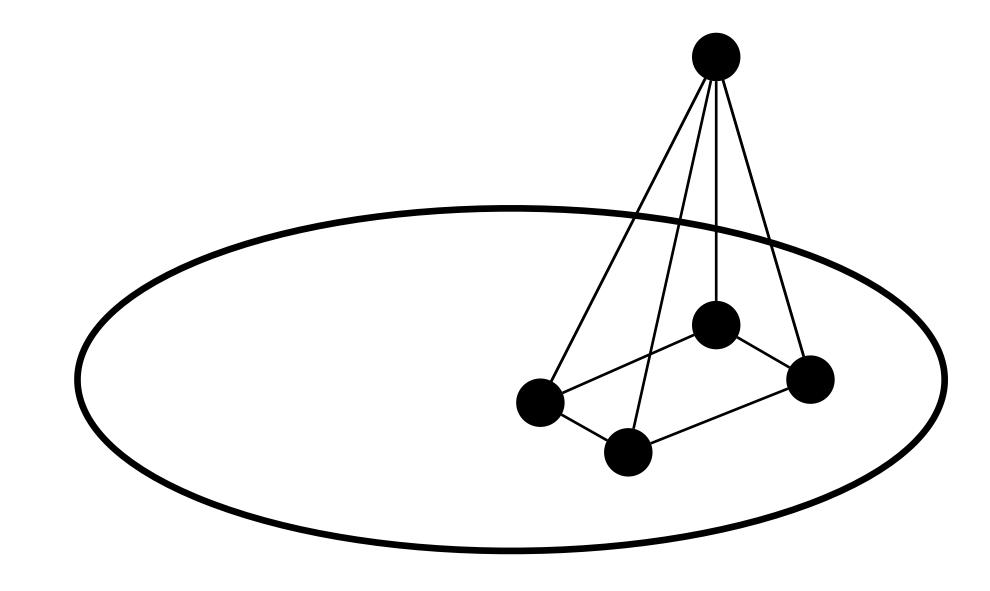
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone



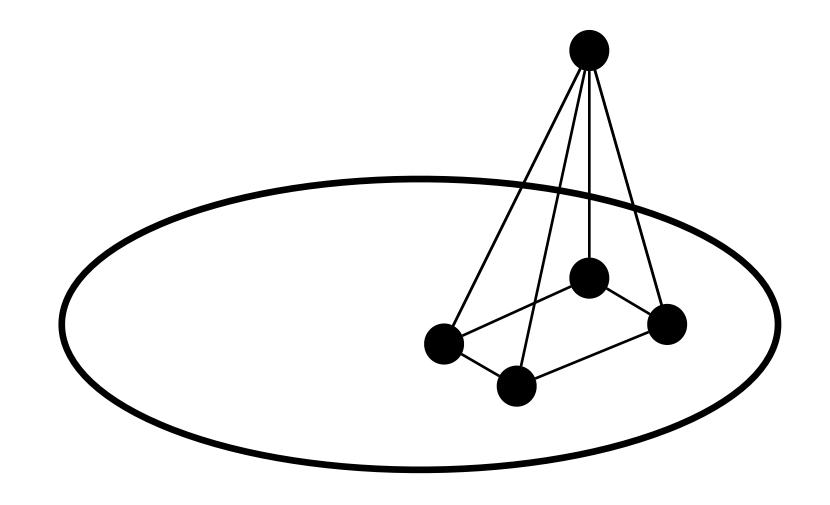
- Need homological algebra to relate Betti numbers with counts
 - adding a vertex = construct mapping cone

•
$$\beta_q(\text{new}) \le \beta_q(\text{old}) + \beta_{q-1}(\text{link})$$

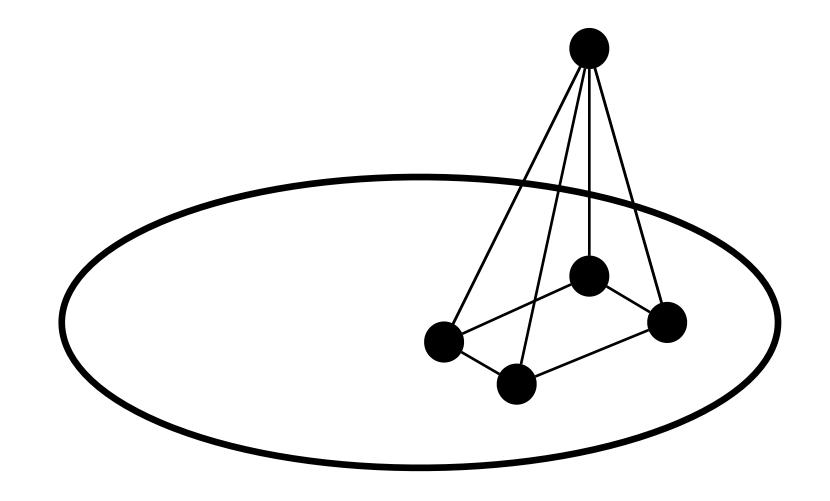




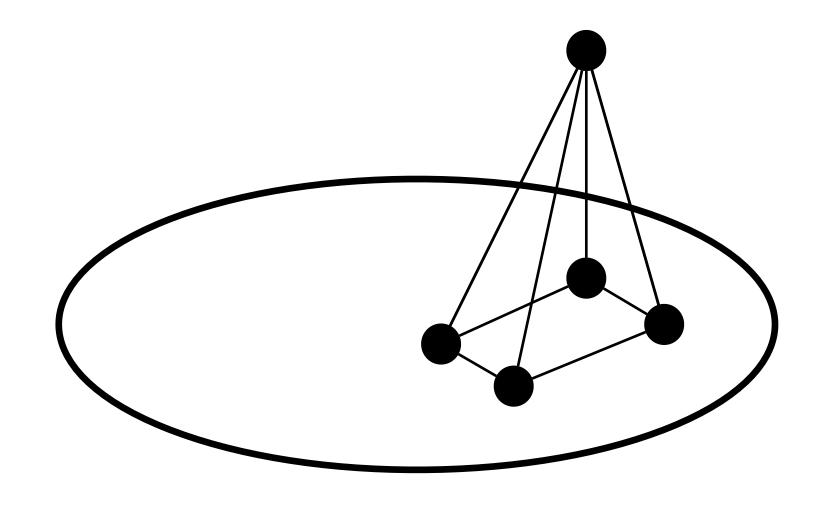
- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$



- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]



- Need homological algebra to relate Betti numbers with counts
 - $\beta_q(\text{new}) \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$
- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

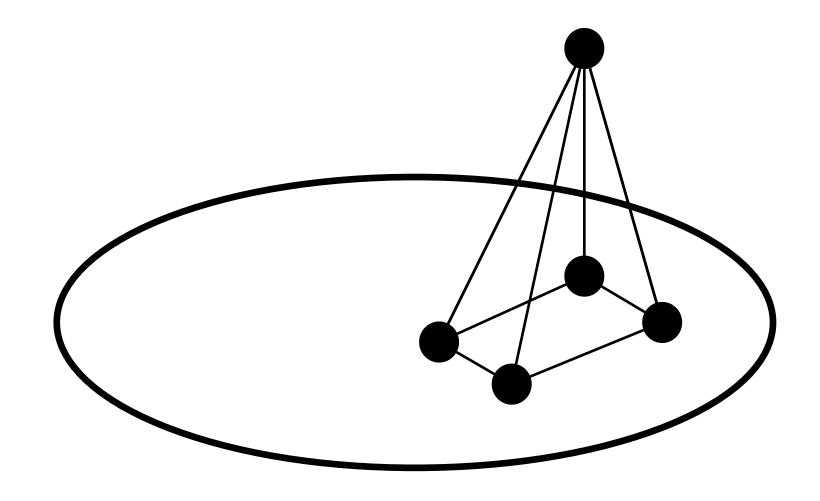


Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

$$\bullet \ 1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \leq \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \leq \beta_{q-1}(\operatorname{link})$$

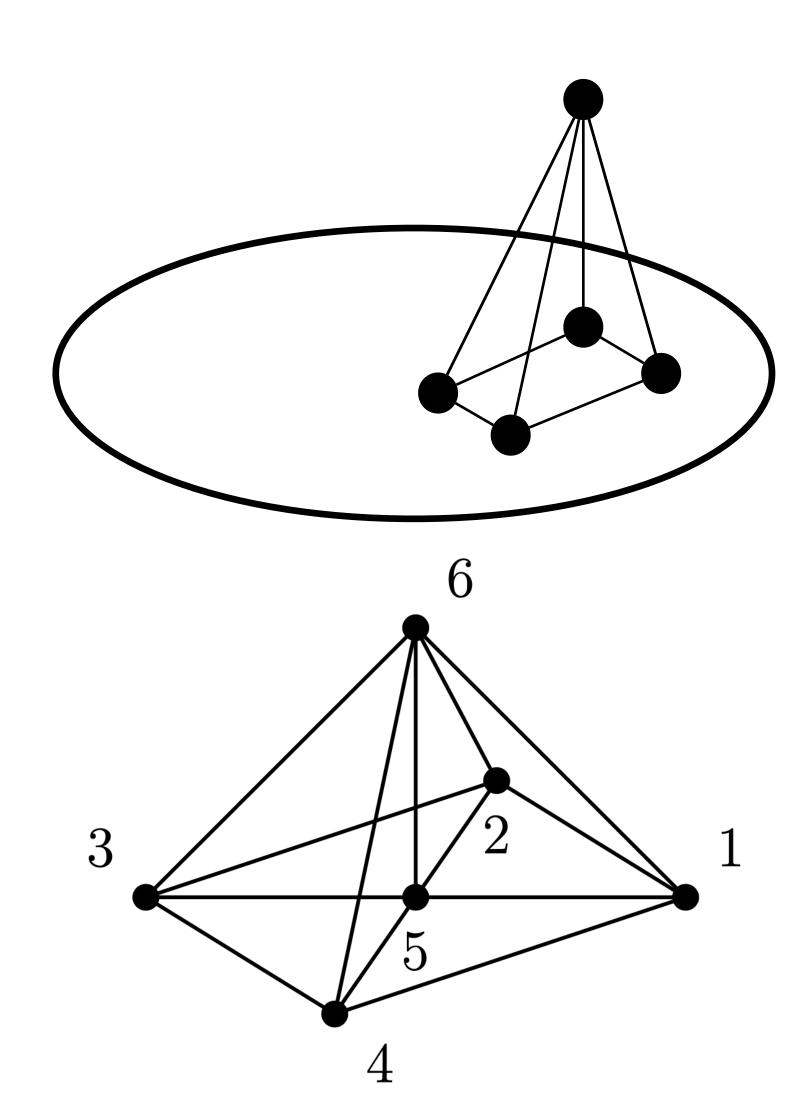


Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

$$\bullet \ 1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \leq \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \leq \beta_{q-1}(\operatorname{link})$$



Need homological algebra to relate Betti numbers with counts

•
$$\beta_q(\text{new}) - \beta_q(\text{old}) \le \beta_{q-1}(\text{link})$$

- Identify the "square count" as the main term with minimal cycle results in [Gal 2005] and [Kahle 2009]
- Generalize minimal cycle results with homological algebra

$$\bullet \ 1 - \beta_q(\operatorname{link}, S^{q-1}) - \beta_q(\operatorname{link}) \leq \beta_q(\operatorname{new}) - \beta_q(\operatorname{old}) \leq \beta_{q-1}(\operatorname{link})$$

 Apply graph counting result in [Garavaglia and Stegehuis 2019] on a large class of subgraphs

