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Week 1: Category

Read Definition 1.1.1 of [Riehl, 2017] (https://math.jhu.edu/~eriehl/context/)
and verify the following items are categories. Get a feeling of how morphisms
are like functions but not always so.

1. Set, whose objects are sets and morphisms are functions.

2. Group, whose objects are groups and morphisms are homomorphisms.

3. Let G be a group. G is a category with one object, which we denote by
∗, and its morphisms are the elements of G. (∗ is not multiplication on
G. We are adopting the convention of denoting nameless things by ∗.)
Convince yourself that morphisms in this case still behaves like functions.

(Hint: identify an element g ∈ G with the map x 7→ gx. The relevant
keyword is Cayley theorem.)

Note that G, on the one hand, forms a category itself, and on the other, is
an object in the category Group. Much pain of studying category theory
comes from having to navigate the different roles the same thing plays in
different contexts.

4. Let P be a partially ordered set, i.e. there is a binary relations ≤ on P
that satisfies

• x ≤ x for every x ∈ P , and

• x ≤ z whenever x ≤ y and y ≤ z.

P is a category whose objects are elements of P and there is exactly one
morphism x → y for each pair of x, y ∈ P such that x ≤ y, and these
are all the morphisms. Below are two non-trivial examples of partially
ordered sets.

(a) Let I = [0, 1] ⊆ R. Let P be the set of finite subsets of I. P is
ordered by inclusion, i.e. P ≤ Q if and only if P ⊆ Q. Considering
this partial order simplifies proofs about Riemann integration when
a finite subset of [0, 1] is thought of as a partition of the interval.
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(b) Let X be a topological space. The set τ of open subsets of X is
again ordered by inclusion, i.e. U ≤ V if and only if U ⊆ V . τ ,
thus partially ordered, as a category, is denoted by Open(X). This
example will be extended give a natural example of presheaves later.

A group as a category and a partially ordered set as a category are simple
examples of categories for us to check our understanding and intuitions later as
the theory develops.

Week 2: Functors

0.1 Functors

Read Definition 1.3.1 of [Riehl, 2017] (https://math.jhu.edu/~eriehl/context/)
and verify the following items are functors. Get a feeling of how functors are
like meta-functions.

1. Let A and B be groups. Recall that each group may be regarded as
a single-object category. Show that a homomorphism f : A → B is a
functor between the two single-object categories.

2. Let P and Q be two partially ordered sets, and hence two categories. Show
that any order preserving map f : P → Q (i.e. f(x) ≤ f(y) whenever
x ≤ y) is a functor between them.

3. Denote by VectQ the category of vector spaces over Q, not necessarily
finite-dimensional. Consider the forgetful functor U : VectQ → Set,
which maps each group to its underlying set and homomorphisms to the
underlying function.

4. Let S be a set. The free vector space generated by S, which we denote
by 〈S〉 1, consists of formal finite Q-linear combinations of elements of S,
and the addition is defined by matching terms (e.g. ( 3

2a + 4b) + (−2a +
5b − c) = − 1

2a + 9b − c). Every function f : S → T extends to a linear

map f̃ : 〈S〉 → 〈T 〉, which is defined by

f̃(
∑

qiai) =
∑

qif(ai).

(Formally, one may write elements of 〈S〉 as functions from S to Q whose
values are nonzero for only finitely many elements of S, and identify the
function values with the coefficients above. Explicitly, let q : S → Q be a
function such that Sq = {a ∈ S : q(a) 6= 0} is finite. We identify q with∑
q(ai)ai, where ai’s are the distinct elements of Sq. Addition and scaling

are defined pointwise, i.e. (p+q)(a) = p(a)+q(a), and (λq)(a) = λ(q(a)).)

1〈·〉 is a heavily abused notation and means different things in different places, so the
notation is not completely canonical.
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Consider the functor F : Set → VectQ defined by mapping each set S
to 〈S〉, and each function f : S → T to its linear extension f̃ . Later, we
will see that U and F form an adjunction pair. Category theory gives us
theorems to characterize when a functor belongs to an adjunction pair, and
hence allows one to construct the adjoint of the forgetful functor, namely
F , without having to actually write out the tedious inner structures 〈S〉.

5. Let FinVectQ be the category of finite-dimensional vector spaces over Q
(with linear maps as morphisms). Let C be the category whose objects are
nonnegative integers, whose morphisms from n to m are Q-valued matrices
of size m × n, and whose composition is matrix multiplication. Consider
the functor F : C → FinVectQ mapping n to Qn and a matrix M to the
linear transformation v 7→ Mv. Later, we will see that FinVectQ and C
are equivalent via F .

0.2 Contravariant Functors

The fundamental property of functors is that functors preserve arrows (mor-

phisms): if the domain category of a functor F has a morphism x
f−→ y, then we

have, in the codomain category Fx
Ff−−→ Fy. Sometimes, we would like to con-

sider “functors” G that reverse arrows. Instead of having Gx
Gf−−→ Gy, we want

/ need to have Fy
Gf−−→ Gx. Such functors are called contravariant functors,

and they can be formally described as functors from the opposite category of
the domain. To distinguish ordinary functors, i.e. those that preserve arrows,
from contravariant functors, we call ordinary functors covariant. See Definitions
1.3.5 and 1.2.1 of [Riehl, 2017] for precise definitions, and verify the following
items are contravariant functors.

1. The dual of a vector space V over Q, denoted by V ∗, is the vector space
of linear maps from V to Q. Consider the contravariant functor hQ :
FinVectQ → FinVectQ that maps each vector space to its dual, and
each linear transformation T : V → W to its adjoint T ∗ : W ∗ → V ∗,
which sends a linear map w∗ : W → Q to w∗ ◦ T . Note that we could
have replaced the codomain Q by any other fixed vector space V0 over Q
and consider the functor hV0

that sends each vector space V to the vector
space of linear maps from V to V0. Such functors are examples of Hom
functors, which we may revisit time allows.

2. Let X be a topological space and Open(X) be the subsets of X. Consider
the contravariant functor F : Open(X) → Set that maps an open set U
to C(U), the set of continuous functions from U to R, and an inclusion
U ⊆ V to the restriction function resU,V : C(V ) → C(U), which is de-
fined by resU,V (f) = f |U . Contravariant functors on Open(X) are called
presheaves on X.
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Week 3: Natural Transformation

0.3 Natural Transformation

Read Definition 1.4.1 of [Riehl, 2017] (https://math.jhu.edu/~eriehl/context/).

1. Let ϕ,ψ : A → B be homomorphisms between two groups. Recall that
group homomorphisms are functors. Show that there is a natural trans-
formation between ϕ and ψ if and only if they are conjugate to each other,
i.e. there exists b ∈ B such that for every a ∈ A, ψ(a) = bϕ(a)b−1.

2. Let ϕ,ψ : P → Q be order-preserving maps between two partially ordered
sets. Recall that order-preserving maps between partially ordered sets are
functors. Show that there is a natural transformation η : ϕ ⇒ ψ if and
only if ψ dominates ϕ, i.e. ϕ(x) ≤ ψ(x) for every x ∈ P .

3. Let X be topological space. Let F : Open(X) → Set be the presheaf
of continuous functions, i.e. F (U) is the set of real-valued continuous
functions on U . Let Fs : Open(X) → Set be the presheaf of smooth
functions, i.e. Fs(U) is the set of smooth real-valued functions on U .
Show that the embedding function iU : Fs(U) → F (U) defines a natural
transformation from Fs to F .

4. For each finite-dimensional vector space W over Q, let hW : FinVectQ→
FinVectQ be the covariant functor that maps V to the vector space of
linear maps from W to V .2 Let T : U → V be a linear transformation.
Show that T determines a natural transformation from hV to hU .

0.4 Equivalence of Categories

Read Definition 1.5.4.

1. Show that two groups are equivalent as categories if and only if they are
isomorphic as groups.

2. Characterize equivalent partially ordered sets as categories, i.e. give a
necessary and sufficient condition for the categorical equivalence of two
partially ordered sets.

3. Let C be the category whose objects are nonnegative integers, whose mor-
phisms from n to m are matrices of dimension m × n, and whose com-
position is given by matrix multiplication. Show that C is equivalent to
FinVectQ, the category of finite-dimensional vector spaces over Q.

4. Read Definition 1.5.7.

2Notice that we use superscript rather than subscript. The convention is that a linear map
drops the input from the domain to the codomain. Since we fix the domain this time, we put
it on top.
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(a) Show that if C and D are equivalent categories via F : C → D (and
other data), then F is full, faithful and essentially surjective.

(b) Prove Theorem 1.5.9 on your own (i.e. without referring to its proof,
nor Lemma 1.5.10).

5. (optional) Show that Set (the category of sets) and Group (the category
of groups) are not equivalent categories. (Hint: Consider the cardinality
of Set(S, ∅), where ∅ denotes the empty set.)

0.5 Sheaf (Optional)

This is not really an exercise, but I want to point you to a reference on real-
world applications of sheaf theory: Chapter 9 of [Ghrist, 2014] (https://www2.
math.upenn.edu/~ghrist/notes.html). Don’t try to swallow it this week. In
fact, throughout this project, we will not make heavy use of sheaf theory other
than its formalism. I just want you to have some tangible applications to fall
back on in case you feel sick of the abstract nonsense.

Week 4: Adjunction

A category X is said to be locally small if and only if the family X(x, y) of
morphisms is a set for every pair of objects x, y. Adjoint functors between two
locally small categories are defined as follows.3

Definition 1. Let F : X → A and G : A→ X be functors between two locally
small categories. F is said to be the left adjoint of G, and equivalently, G, the
right adjoint of F , if and only if

A(Fx, a) ∼= X(x,Ga), (1)

where ∼= means the existence of a bijection Φx,a : A(Fx, a)→ X(x,Ga) that is
natural in the sense that, for every quadruple of morphisms f : x→ y, g : a→ b,
ϕ : Fx→ a and ψ : Fy → b, the diagram

Fx a

Fy b

ϕ

Ff g

ψ

(2)

commutes if and only if the diagram

x Ga

y Gb

Φx,a(ϕ)

f Gg

Φx,a(ψ)

(3)

3We deviate from the definitions in both [Riehl, 2017] and [?]. Instead we have used an
equivalent formulation that is more intuitive and is easier to work with. We, however, follow
the notations of [?] by denoting categories by capital letters and objects by lower case letters;
we also reserve consecutive letters for objects in the same category to avoid using ′.

5

https://www2.math.upenn.edu/~ghrist/notes.html
https://www2.math.upenn.edu/~ghrist/notes.html


does.

Remark.

• The parallel with the adjoint in linear algebra comes from viewing A(·, ·)
and X(·, ·) in (1) as inner products.

• Note that (2) is obtained from (3) by “throwing”G to the left and changing
it to F , vice versa.

• It can be shown that the left and right adjoints of a functor are unique
up to isomorphism. We will say the left adjoint rather than a left adjoint
below.

• Note that when showing two functors are adjoint to each other by es-
tablishing the equivalence of the two commutative diagrams above, the
existence of the maps have already been assumed, and only their commu-
tivity needs to be shown.

1. Consider Z and R as partially ordered sets. Let i : Z→ R be the inclusion
functor, i.e. i(n) = n for every integer n. Show that the ceiling function
d·e and the floor function b·c are the left and right adjoints of i. (Hint: If
you get stuck, the last remark above may help.)

2. (optional) Consider R and [0, 1] as partially ordered sets. Let F : R →
[0, 1] be the distribution function of a random variable (hence it is a left-
continuous monotone function with inf F (x) = 0 and supF (x) = 1). Show
that the quantile function Q : [0, 1]→ R of F , defined by

Q(p) = inf{x : p ≤ F (x)},

is the left adjoint of F .

3. (optional) Let ϕ : G → H and ψ : H → G be group homomorphisms.
Suppose ϕ is the left adjoint of ψ. Show that ϕ and ψ are isomorphisms.
(Hint: Construct a natural transformation from idG to ψϕ and one from
ϕψ to idH , and recall the characterization of natural transformations from
the exercises from the previous week.)

4. Show that the forgetful functor U : FinVectQ→ Set is the right adjoint
of the free vector space functor F : Set→ Ab.

5. Show that if F : X → A and G : A → X are equivalences of categories,
then F is the left adjoint of G. Therefore, adjunction is a weaker form of
equivalence.
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Week 5: Limit and colimit

Again, we use equivalent definitions that are differently phrased from those in
[Riehl, 2017] and [?].

Definition 2 (Limit). Let D : J → C be a functor. An object L in C, together
with maps ϕi : D(i)→ L for every object i in J , is said to be a limit of D if and
only if, for every object Z in C, whenever there exist maps ψi : Z → D(i) such
that the outer triangle below commute for every arrow (morphism) a : i→ j in
J , there exists a map ψ : Z → L such that the inner triangles commute.

Z

L

D(i) D(j)

ψ

ψi

ψj

ϕi

ϕj

D(a)

(4)

The colimit can be defined by “reversing” all the arrows in (4). Precisely,
we have

Definition 3 (Colimit). Let D : J → C be a functor. An object L in C,
together with maps ϕi : L → D(i) for every object i in J , is said to be a
colimit of D if and only if, for every object Z in C, whenever there exist maps
ψi : D(i) → C such that the outer triangle below commute for every arrow
(morphism) a : i → j in J , there exists a map ψ : L → Z such that the inner
triangles commute.

Z

L

D(i) D(j)

ψ

D(a)

ϕi

ψi

ϕi

ψj

(5)

Remark. It can be shown that the limit and colimit, if existent, are unique up
to isomorphism.

1. (Limits are like sequential limits.) Let S be a set and P (S) be its power
set, i.e. the set of all subsets of S. Then P (S) is a partially ordered set
ordered by inclusion. Let D : Z → P (S) be a functor between the two
categories of partially ordered sets. Show that the limit and colimit of D
are ∩nD(n) and ∪nD(n) respectively.

2. (Limits are like analytical limits.) Let P be a partially ordered set and
D : J → P be a full functor (i.e. for every pair of objects i, j in J , every
morphism between D(i) and D(j) is the image of some morphism i → j
under D). Show that the limit of D is the greatest lower bound of the
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image of D ({D(i) : i an object of J}), and the colimit of D is the least
upper bound.

3. (Non-linear indexing set; optional) Let P be the set of finite increasing
sequences starting with 0 and ending with 1 in [0, 1]. Elements of P are
called partitions, and we think of them as partitions of the unit interval
into smaller subintervals. For example,

0 ≤ 1/5 ≤ 2/5 ≤ 3/5 ≤ 4/5 ≤ 1

is the partition that breaks up the unit interval into 5 equal pieces. P
is partially ordered by inclusion, i.e. (ti)

m
i=0 ≤ (sj)

n
j=0 if and only if

{ti} ⊆ {sj}.
Let f : [0, 1] → R be a continuous function, and L : P → R be the lower
Riemann sum function, i.e.

L((ti)
m
i=0) =

m−1∑
i=0

max
x∈[ti,ti+1]

f(x)(ti+1 − ti).

Show that the limit of L is the Riemann integral I =
∫ 1

0
f(x)dx of f on

[0, 1].

4. (Finite limit; limits aggregate data.) Let J be the category with two
distinct objects and no non-identity morphisms. Let D : J → Set be a
functor. Denote by A and B the two image sets under D. Show that the
limit of D is the Cartesian product A× B and the colimit is the disjoint
union A

∐
B, i.e. the union of A and B, except that we keep track of

where the element come from, so each element in the intersection gives
rise to two elements in the disjoint union. Formally, this can be described
in set language as

A
∐

B = {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}.

5. (Equalizer and coequalizer; limits aggregate data, again; optional)

Let J be a category with exactly two objects s and t, two morphisms a, b
from s to t, and no other non-identity morphisms. Let D : J → Set be a
functor. Let X = Ds, Y = Dt, f = Da, g = Db. Pictorially, we have

X
f−→−→
g
Y.

Remark. Since all functors can be represented as diagrams like the one
above, we call them diagrams, and this is why we denote functors by D.
The formal definition of diagrams is that a diagram D of shaped J in C
is a functor D : J → C. The only difference between a functor and a
diagram is the perspective.
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(a) Show that the limit of D is L = {x ∈ X : f(x) = g(x)} with ϕs :
L → X being the inclusion map, i.e. ϕs(x) = x, and ϕt : L → Y is
f . L is called the equalizer of f and g.

(b) (optional) Let D : J → FinVectQ be a functor. Let g be the
zero map, i.e. the map that sends all vectors to the zero vector in
the codomain. Show that the limit of D is the kernel of f . This
is the categorical way of thinking of kernels (or, a semi-categorical
way, since we are still defining zero map by the values it takes; a fully
categorical approach would be to define {0} as the object with exactly
one morphism between any object and itself in either direction, and
the zero map as a morphism that is the composition ϕψ such that
the domain of ϕ and the codomain of ψ are {0}).

(c) Colimits of functors on J are called coequalizer. We show the quo-
tient set of an equivalence relations is a coequalizer. Let ∼ be an
equivalence relations on a set A. Let

G = {(a, b) ∈ A2 : a ∼ b}

be the graph of ∼. Let X = G, Y = A, f and g be the projections to
the first and second coordinates. Show that the quotient set A/ ∼ is
the colimit of D.

Remark. Equalizers and coequalizers are important because many
constructions boil down to the construction of a giant complicated
equalizer or coequalizer.

6. (optional) Show that the limit and colimit are unique up to isomorphism,
i.e. if L and K are two (co-) limits, then there exist morphisms f : L→ K
and g : K → L such that fg = idK and gf = idL.4

More on Limits and Adjunction

0.6 Existence of Limits

Limits and colimits may not exist.

1. Consider the simplicial category ∆, whose objects are nonempty finite
totally ordered sets and whose morphisms are order-preserving functions.
Let J be the discrete two-object category, whose objects are 0 and 1 and
whose only morphisms are the identities. Consider the functor D : J →∆
such that D(0) and D(1) are both the singleton. Show that D has no
colimit.

4We did not show left and right adjoints are unique. Showing it from scratch is tedious.
One way to show it efficiently is to show left and right adjoints are in fact limits of appropriate
functors.
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2. Consider again the simplicial category ∆ and the two-object category J .
Consider the functor D : J → ∆ such that each of D(0) and D(1) is the
two-element totally ordered set. Show that D has no limit.

3. Consider the category M of metric spaces, whose objects are metric spaces
and whose morphisms are non-expansive maps. Show that the functor D
defined in question 1, now taking values in M rather than ∆, again has
no colimit.

0.7 Colimit and Density

A subcategory D of a category C is said to be dense if and only if every object in
C is a canonical colimit of objects in D (i.e. colimit of a functor whose codomain
is D). This is defined in Section X.6 of [MacLane, 1998], but we will not go into
the technical definition of “canonical”. Instead, we motivate the concept with
examples, and content ourselves with a weaker, and hence less useful, but more
intuitive notion of “denseness” by ignoring canonicality.

1. We write arbitrary sets as colimits of singletons. Let S be a set. Let S̄ be
the category whose objects are elements of S and whose only morphisms
are the identity morphisms. Let DS : S̄ → Set be the functor that maps
each element of S to the singleton. Show that S is the colimit of DS .

Remark. This functor is in fact the canonical one.

2. We write partially ordered sets as colimits of finite totally ordered sets.
Let P be the partially ordered set {0, 1, 2, 3, 4, 5, 6, 7} whose partial order
is defined by

0 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 7
1 ≤ 2

3 ≤ 6 ≤ 7

Let J be category with objects s0, s1, s2, t0, t1, t2 and non-identity mor-
phisms ai : si → ti and bi : si → ti+1 mod 3, i = 0, 1, 2. Pictorially, we
have

s0 t0

s1 t1

s2 t2

Let D : J → PoSet defined by

Dt0 = {0 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 7}
Dt1 = {1 ≤ 2}
Dt2 = {3 ≤ 6 ≤ 7}
Dsi = Dti ∩Dti+1 mod 3 for i = 0, 1, 2
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and the images of arrows under D are induced by inclusion. Show that
P = colimD.

3. Let P be a partially ordered set. Let T be the set of finite totally ordered
subsets of P . Note that T is partially ordered by inclusion, and hence is
a category. Let D : T → PoSet be the functor that maps each totally
ordered set to itself as a partially ordered set, and each inclusion arrow to
the inclusion map. Show that P = colimD.

Remark. This colimit is not canonical. The reason is that the indexing
category T is not big enough, and hence the resultant universal mapping
property (the commutativity of the diagram that defines the colimit) is
not strong enough. However, we will not go into that.

0.8 Adjunction and Limit

1. Show that right adjoints preserve limits. The precise statement to be
proven is as follows. Let G : A → X is the right adjoint to a functor F .
Let L be the limit of a functor D : J → A. Then GL is the limit of GD.

2. Let FinVectZ2 be the category of finite-dimensional vector spaces over
the 2-element field Z2 = {0, 1}. (We will not need any properties of Z2

other than that it is finite, and that it is a field and hence vector spaces
over it is well-defined.) Verify the above statement for the forgetful functor
U : FinVectZ2→ Set and the discrete two-object category J , which has
exactly two objects and no non-identity morphisms.

3. Define U and J as in the previous question, show that U does not preserve
colimits. (Hint: Colimits of D : J → Set are disjoint unions and colimits
of D : J → FinVectZ2 are direct sums.)

4. Show that left adjoints preserve colimits.

Week 7: Hom Functors

This week and the next, we study two important theorems in category theory.
They are inevitably very abstract, since definitions in category theory are ab-
stract in the first place. The proofs themselves are not very insightful either.
Read through all exercises before you parse the theorems, and read through
both theorems before you dive into their proofs. This will give you an overall
picture before the details can get to confuse you. The exercises are arranged in
the logical order rather than in ascending order of difficulty. Attempt them in
ascending order of difficulty. For instance, apply a theorem before proving it.

1 Hom Functors and Representable Functors

The philosophy of category theory is that everything can be understood through
its relationship with other objects, and dissection of a set to examine its elements
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is unnecessary. Indeed, limits are defined in terms of arrows to and from other
objects, rather than “the elements they contain”, which is a concept that cannot
even be written down in the language of category theory.

Expanding on the relationship-centric philosophy, we may identify an object
x with its Hom functors, which we define below, and then we may study the
object x through its actions on other objects. Later we will see Hom functors
are useful in other ways.

Definition 4. Let x be an object of a category X. The covariant Hom functor
hx : X → Set represented by x is defined by

hx(a) = X(x, a)

for every object a of X, and

hx(a
f−→ b) = [(x

ϕ−→ a) 7→ (x
ϕ−→ a

f−→ b)]

for every morphism a
f−→ b in X. The contravariant Hom functor represented

by x, denoted by hx : X → Set and hx : Xop → Set is defined by

hx(a) = X(a, x)

for every object a of X, and

hx(a
f−→ b) = [(b

ψ−→ x) 7→ (a
f−→ b

ψ−→ b)]

for every morphism a
f−→ b in X.

Definition 5. A functor is said to be representable (resp. represented by an
object x) if and only if it is naturally isormophic (i.e. a natural transformation
consisting of isomorphism) to a Hom functor (resp. represented by x).

1. Consider the category PoSet of partially ordered sets (objects are par-
tially ordered sets rather than elements of one partially ordered sets!).
Show that the forgetful functor U : PoSet → Set is represented by the
one-element partially ordered set {0}.

2. Consider the category VectQ of vector spaces of Q, not necessarily fi-
nite dimensional. Show that the forgetful functor U : VectQ → Set is
represented by Q.

3. Consider the category FinVectQ of finite-dimensional vector spaces over
Q. Let F be the functor such that F (V ) is the set of linear maps from V
to Q. Show that F is representable.

4. Let G be a group and UG be the underlying set of G. Let G be the one-
object category whose morphisms are elements of G, and ∗ be the unique
object in G. Let F : G → Set be the functor such that F∗ = UG and
Fg = (x 7→ gx), where gx denotes the product of g and x in G. Show that
F is representable.

12



5. Characterize Hom functors on a partially ordered set (not the category of
all partially ordered sets!) by unravelling the definitions.

6. Recall simplicial sets are contravariant functors (Example 1.3.7(vi) of
[Riehl, 2017], or Definition 3.10 of [Friedman, 2008]). Identify simplicial
sets that are representable contravariant functors.

2 Week 8: Yoneda Lemma and Density Theo-
rem

2.1 Yondea Lemma

Yoneda lemma justifies the idea of identifying an object x with its Hom functors
hx and hx. For this idea to work, we must ensure that no information is lost
when we pass to Hom functor. More precisely, we need naturally isomorphic
Hom functors to be represented by isomorphic objects (objects with morphisms
between them that compose to the two identities of the two objects). This is a
corollary of Yoneda lemma. Density theorem in the following section depends
on Yoneda lemma as well.

1. Read the following part of Section 2.2 of [Riehl, 2017]: from Example 2.2.2
to the proof of Theorem 2.2.4 (inclusively).

2. In your own words, write down Theorem 2.2.4 and prove the bijection part
of the theorem.

3. In this question, we show that the Yoneda lemma is a generalization of
the following trivial linear algebraic fact:

ei · v = vi (6)

for every v ∈ Rn, where · denotes the dot product, vi denotes entry i of the
tuple v and ei denotes the ith standard basis vector, i.e. the tuple whose
entry i is 1 and all other entries of which are zero. Note the formal similar-
ity with Yoneda lemma. The moral is that functors (or presheaves) behave
like tuples, representable functors behave like standard basis vectors, and
Hom behaves like dot product. Throughout this question, denote by |s|
the cardinality of a set s and |S| the entrywise cardinality if S = (s1, ..., sn)
is a tuple of sets, i.e.

|S| = (|s1|, ..., |sn|).

(a) Let Cn be the category with n objects 1, 2, ..., n with no non-identity
morphisms. Show that set-valued functors on Cn are n-tuples of sets.

(b) Show that the functor hi represented by i ∈ ob(Cn) satisfies

|hi| = ei.
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(c) Let Z2Vect be the category of vector spaces over Z/2. (We choose
Z/2 for the sake of concreteness. The argument holds for any finite
field.) Let F : Set → Z2Vect and U : Z2Vect → Set be the free-
forgetful adjunction pair. Recall that F is the left adjoint of U . Show
that for set-valued functors S, T on Cn,

dim Hom(FT, FS) = |T | · |S|.

(d) Using Yoneda lemma, show that for every i ∈ ob(Cn) and every tuple
S = (s1, ..., sn) of sets,

|Hom(Fhi, FS)| = |Hom(hi, UFS)| = |(UF )(si)|.

Hence, show that (6) is true for v ∈ Zn≥0, where Z≥0 denotes the set
of nonnegative integers.

(e) Using linearity and continuity, show that (6) is true for v ∈ Rn.

(f) Show that for tuples S = (s1, ..., sn), T = (t1, ..., tn) of sets,

log |Hom(S, T )| = |S| · log |T |,

where the last logarithm is applied entrywise. The moral is that the
non-commutativity of Hom makes it fundamentally different from the
dot product, despite their similarity.

4. Show that if hx and hy are naturally isomorphic (i.e. there exist natural
transformations α : hx ⇒ hy and β : hy ⇒ hx such that for every object
a, βaαa = idhx(a) and αaβa = idhy(a)), then x and y are isomorphic (i.e.
there exist morphisms f : x → y and g : y → x such that gf = idx and
fg = idy).

5. Let P be a partially ordered set. For x ∈ P , let Dx = {y ∈ P : x ≤ y}.
Show that for every x, y ∈ P , x = y whenever Dx = Dy

(a) using Yoneda lemma (or the previous question, which is a corollary
of Yoneda lemma), and

(b) using a direct argument.

6. (optional) In this question, we show how to construct the left adjoint
functor F : Set→ VectQ of the forgetful functor U : VectQ→ Set from
scratch without knowing the answer in advance, as we did in the second
exercise. In general, this can be done by appealing to adjoint functor
theorems, but for simple cases, this can be done directly.

(a) Convince yourself that there is no obstruction to the existence of the
left adjoint of the forgetful functor (e.g. does the forgetful functor
preserve suitable limits?)
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(b) Let {∗} be the singleton, which is unique up to isomorphism in Set.
Show that if F is the left adjoint of U , then

VectQ(F{∗}, V ) ∼= Set({∗}, hQ(V )) ∼= hQ(V ).

(Hint: Recall that U is represented by Q.)

(c) Conclude, using Yoneda lemma or one of its corollaries, that F{∗} ∼=
Q.

(d) Construct F . (Hint: Recall that every set is a colimit of the singleton,
and left adjoints preserve colimits.)

7. (optional) Show that the right adjoint G of a functor F : X → A is unique
up to natural isomorphism. (Hint: Adjunction implies hGa(x) ∼= ha(Fx).)

2.2 Density Theorem (Optional)

Again, this section is for next week. Further, it will be optional.
Density theorem states that representable functors to Set are dense, in the

sense that, while not every functor is representable, it is a colimit of repre-
sentable functors. We saw earlier that every partially ordered set is the colimit
of finite totally ordered sets. Here representable functors play the role of finite
totally ordered sets.

1. Read Theorem III.7.1 of [MacLane, 1998] and its proof.

2. Convince yourself that if a functor F into a set-valued functor category (i.e.
a category whose objects are morphisms from a fixed category to Set and
morphisms are natural transformations) has a right adjoint (i.e. F is the
left adjoint of some functor), then its actions on objects are determined by
its actions on representable ones. (Hint: Left adjoints preserve colimits.)
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