
Directed Reading Program

Fall 2020

Week 0

Reading [Carlsson, 2009, Otter et al., 2017]

Questions

1. What is the appeal of the topological perspective on data?

2. What does persistence roughly mean?

3. Any applications that interest you? What is it about?

Week 1

Reading

persistence Figure 1 of [Otter et al., 2017] (and/or Section 2.3 of [Carlsson, 2009]
strictly before Definition 2.9) for the intuitive idea of persistence

general topology my note in the appendix (Section 1)

complex Chapter 3.I of [Edelsbrunner and Harer, 2010] (We will stick to
[Edelsbrunner and Harer, 2010] for several weeks.)

Questions

1. (Homeomorphism)

(a) Show that t 7→ 1
e−t+1 is a homeomorphism from the real line to

the open interval (0, 1). (Sketch the graph!) Convince yourself
that the real line and the open interval have the same shape.

(b) Convince yourself that the closed finite circular cone

{(x, y, z) : z2 = x2 + y2, 0 ≤ z ≤ 1}

and the closed disc

{(x, y) : x2 + y2 ≤ 1}

are homeomorphic, and they indeed have the same shape. (Draw
them!)
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(c) Convince yourself that the closed finite cylinder

{(x, y, z) : x2 + y2 = 1, |z| ≤ 1}

is homeomorphic to the closed annulus

{(x, y) : 1 ≤ x2 + y2 ≤ 2}.

2. (Non-Homeomorphism) Show that the half-open half-closed interval
[0, 1) and the open interval (0, 1) are not homeomorphic.

3. (Simplicial Complex)

(a) Construct a simplicial complex homeomorphic to the unit circle.

(b) Construct a simplicial complex that is homeomorphic to the unit
sphere.

(c) Give an example of a non-constant continuous real-valued func-
tion on the complexes you constructed

Week 2

Reading

simplicial complex Chapter 3.I of [Edelsbrunner and Harer, 2010]

rigor and intuition (optional) Terence Tao’s blog article There’s More
to Mathematics than Rigor and Proofs from https://terrytao.

wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/

amusement (optional) If you are really frustrated with topology, watch
this: https://www.youtube.com/watch?v=SyD4p8_y8Kw

Questions

1. (Simplicial Complex)

(a) Construct a simplicial complex homeomorphic to the unit circle.

(b) Construct a simplicial complex that is homeomorphic to the unit
sphere.

(c) Give an example of a non-constant continuous real-valued func-
tion on the complexes you constructed

Week 3

Reading Chapter 3.II of [Edelsbrunner and Harer, 2010]

Questions

1. (Homotopy Equivalence)
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(a) Show that if two spaces are homeomorphic, then they are homo-
topy equivalent.

(b) Convince yourself that the closed unit ball in R3

{(x, y, z) : x2 + y2 + z2 ≤ 1}

deformation retracts to the origin (and hence is contractible, i.e.
homotopy equivalent to a point), but is not homeomorphic to a
point. (Use your intuition; do not try to write down the homo-
topy immediately.)

(c) Convince yourself that the closed finite cylinder

{(x, y, z) : x2 + y2 = 1, |z| ≤ 1}

deformation retract to the unit circle.

(d) Convince yourself that the Mobius strip (formed by gluing the
shorter sides of a rectangular strip in reverse direction) defor-
mation retract to a circle, and hence is homotopy equivalent to
a cylinder, but neither the cylinder nor the Mobius strip is a
deformation retract of the other.

2. (Helly’s Theorem) Construct a few examples in R2 to illustrate Helly’s
Theorem.

3. (Cech and Rips Complex)

(a) What are Cech and Rips Complexes?

(b) What are their respective appeal?

(c) In what way does one approximate the other?

Week 4

Reading

Cech and Rips complex Chapter 3.II of [Edelsbrunner and Harer, 2010]

CW complex (optional) the subsection titled “Cell Complexes” (pages
5 – 8) of Chapter 0 of [Hatcher, 2002] (available at http://pi.

math.cornell.edu/~hatcher/AT/ATpage.html); consult, if neces-
sary, Pages 44 – 47 of [Hatcher, 2005] for definitions and more intu-
itive examples of “identification”

Questions

1. (Cech and Rips Complex) Draw Cech complexes and a Rips com-
plexes of the set of points

{(cos 2π(k/100), sin 2π(k/100)) : 1 ≤ k ≤ 100, k integer}

for r ∈ {r0/4, r0/2, r0}, where r0 = 2π/100. (The distance between
consecutive points is slightly less than r0.)

3



2. (Cech and Rips Complex)

(a) What are Cech and Rips Complexes?

(b) What are their respective appeal?

(c) In what way does one approximate the other?

3. (Identification; optional) Convince yourself a (hollow) cylinder, the
Mobius strip and the torus can be formed (or constructed) by iden-
tifying points on a square.

4. (Cell Complex; optional) Convince yourself a cell complex is “just” a
simplicial complex where elastic and degenerate polygons other than
flat generic triangles are also allowed.

5. (Orientable Surfaces; optional) Convince yourself that the cell com-
plexes of the 1-genus torus (standard torus) and the double torus
(2-hole swimming ring) make sense.

Week 5

Reading

Homology the chapter Introduction of [Giblin, 2010], everything in Chap-
ter 4.I of [Edelsbrunner and Harer, 2010] strictly before the subsec-
tion Reduced Homology on page 83

CW complex (optional) the subsection titled “Cell Complexes” (pages
5 – 8) of Chapter 0 of [Hatcher, 2002] (available at http://pi.

math.cornell.edu/~hatcher/AT/ATpage.html); consult, if neces-
sary, Pages 44 – 47 of [Hatcher, 2005] for definitions and more intu-
itive examples of “identification”

Questions

1. (Homology) What the heck is homology and why does it describe the
number of holes in a space?

2. (Orientation) Try to make sense of the signs in the boundary homo-
morphism when the coefficient is not in Z/2Z.

3. (Example) Compute the homology of a triangle (not just the 3 edges,
but with the triangular face as well).

4. (Identification; optional) Convince yourself a (hollow) cylinder, the
Mobius strip and the torus can be formed (or constructed) by iden-
tifying points on a square.

5. (Cell Complex; optional) Convince yourself a cell complex is “just” a
simplicial complex where elastic and degenerate polygons other than
flat generic triangles are also allowed.

6. (Orientable Surfaces; optional) Convince yourself that the cell com-
plexes of the 1-genus torus (standard torus) and the double torus
(2-hole swimming ring) make sense.
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Responses The question of whether a space with no holes is always contractible
was raised. An affirmative answer exists for cell complexes (a.k.a. CW
complex), by Whitehead theorem.

Before we state Whitehead theorem, we need to define what holes are.
There are two ways to define holes, namely homology and homotopy, both
of which are sequences of groups that describe holes in a space. One may
think of holes as non-trivial elements in these groups. We will study
homology but not homotopy, partly because of the immense difficulty of
computing homotopy groups.

To have a sense of homotopy groups, the first homotopy group, also called
the fundamental group, is roughly the equivalence class of maps from the
unit circle into the space under homotopy. If all maps from the unit circle
are homotopic to the constant map, then the space should have no one-
dimensional hole. Higher homotopy groups replace the unit circle S1 with
Sn.

Theorem 1 (Whitehead Theorem, Theorem 4.5 of [Hatcher, 2002]). Let
X and Y be cell complex (CW complexes). If f : X → Y be a continuous
map that induces an isomorphism between the homotopy groups of X and
Y , then f is a homotopy equivalence.

Therefore, if a group has trivial homotopy groups, then the constant map
has to induce an isomorphism, and hence the constant map is a homotopy
equivalence with a point.

Counter-examples abound for non-CW complexes. These spaces are too
wild to be built from gluing up discs.

Example 2 (Warsaw Circle). Let

X0 = {(x, y) : 0 < x ≤ 1, y = sin 1/x} ∪ {(x, y) : x = 0, |y| ≤ 1}

and C be a smooth curve from (0,−1) to (1, sin 1) that does not intersects
with X0 except at these two points. Then X = X0∪C is not contractible,
but has trivial homotopy groups.

It is not surprising that X has trivial homotopy groups because image of
Sn, which has to be compact, cannot “pass through” the wildly oscillating
part near the y-axis. It is not contractible because there is still in a sense
“a hole”. Proofs, however, are technical.

See the following websites for more details.

• https://en.wikipedia.org/wiki/Shape_theory_(mathematics)#Warsaw_

Circle

• https://math.stackexchange.com/questions/1004837/how-to-show-warsaw-circle-is-non-contractible

• https://math.ucr.edu/~res/math205B-2012/polishcircle.pdf
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Week 6

Reading

Homology any materials from last week you have not thoroughly under-
stood; the subsection Induced Maps on page 83 – 84 of [Edelsbrunner and Harer, 2010],
Chapter IV.2 of [Edelsbrunner and Harer, 2010]

Questions

1. any exercise undone last week

2. (Torus; optional) Compute the homology of a torus. (A torus is a
square with opposite edges identified. A square can be decomposed
into two triangles. This does not give a simplicial complex, but a
so-called ∆-complex, which is something more restrictive than a CW
complex but more general than a simplicial complex. The simplicial
homological computation carries through in this setting.)

3. (Induced map) Consider the hollow tetrahedron S (which is homeo-
morphic to a sphere) with vertices v0, ..., v3. Compute the induced
map i : T → S of the inclusion map of the hollow triangle T with
vertices v0, v1, v2 (which is homeomorphic to a circle) into the tetra-
hedron, i.e. i(vj) = vj for j = 0, 1, 2.

4. (Computation) Convince yourself that computing the Smith normal
form amounts to solving linear equations.

Week 7

Reading

Persistent Homology Chapter VII.1 of [Edelsbrunner and Harer, 2010]

Questions

1. any exercise undone last week

2. Compute the persistent homology of the solid tetrahedron (with re-
spect to a sensible filtration). Illustrate Pairing lemma with this
example.

Week 8

Reading

Image application [Carlsson et al., 2008]

CNN – a follow-up paper (optional) [Brüel Gabrielsson and Carlsson, 2019]

Questions
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1. The paper finds a Klein bottle in the 7th-dimensional sphere S7. Ex-
plain how the sphere arises form image data.

2. The Klein bottle is not revealed directly from the persistent diagram.
Instead, the primary circle and secondary circles are found. Explain
what they are and how they are different.

3. Explain how the author justifies the primary and secondary circles
are in fact on a Klein bottle.

1 Appendix: Crash Course on General Topol-
ogy

Topology has (at least) two important branches, general topology and algebraic
topology. The former concerns convergence and stability under perturbation,
and is the foundation of all topology, while the latter concerns shape identi-
fication and is the foundation of topological data analysis. This note gives a
brief overview of general topology for the study of topological data analysis.
In particular, this note aims explaining intuitively the concepts of open sets,
continuous maps and homeomorphism.

1.1 General Topology: Convergence and Stability

General topology is about convergence and stability under perturbation. The
two concepts are equivalent; convergence sounds more familiar to beginners,
but the perspective of stability sometimes make more theoretical sense. Below,
we mention some themes of general topology phrased in terms of convergence,
and then we establish the equivalence to prepare for the switch to the stability
perspective in the next section.

Below, (topological) space simply means a collection of points with some
structures to describe convergence and stability, just like a vector space is a
collection of vectors, for which sum and scaling makes sense. Later we will
discuss the shape of a space.

Example 3 (Topological Spaces).

• the real line with ε-δ convergence

• the space of continuous functions from [0, 1] to R with uniform convergence

• the unit circle with coordinate-wise convergence

• any polygon in the plane with coordinate-wise convergence

Basic issues general topology addresses, phrased in terms of convergence,
include

1. How can convergence be defined in spaces more complicated than the real
line?
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2. Does a map between two spaces preserve convergence properties?

3. Under what assumptions are nice convergence properties guaranteed?

Convergence and stability under perturbation are a pair of dual concepts, in
the following sense:

Principle 4 (Open-Closed Duality). A set that is closed under convergence if
and only if its complement is stable under perturbation.

This vague informal statement, as well as its name, needs further explana-
tion.

Concept 5 (Closed). A set F is said to be closed under convergence if and
only if whenever a sequence (or its generalization) in F converges to a point x,
then the point lies in F . The technical name for such a set is closed set.

Concept 6 (Open). A set U is said to be stable under perturbation if and only
if for any point x ∈ U , small enough perturbation of x will not get it outside of
U . The technical name of such a set is open set.

Example 7 (Open and Closed Sets).

Closed [0, 1] is a closed set in R because a sequence in [0, 1] cannot converge
to a point outside of [0, 1].

Open (0, 1) is an open set in R because, a point, say, 0.1 cannot be brought
outside of (0, 1) if the perturbation moves points by a distance smaller
than 0.01.

Now we explain the duality.

Remark. The duality is often taken as the definition of a closed set.

Explanation. Suppose F is closed under convergence. We show FC is stable
under perturbation by contradiction. If FC is not stable under perturbation,
then FC has a point x that can brought outside of FC , i.e. into F , by arbitrarily
small perturbation. Then the images of these increasingly small perturbation
form a (generalized) sequence in F that converges to x, contradicting with the
fact that F is closed and x /∈ F .

Conversely, Suppose U is stable against perturbation. We show UC is closed
under convergence by contradiction. If UC is not closed under convergnece,
then some (generalized) sequence in UC converges to a point x outside of UC ,
i.e. indside U . Then bringing x to one of a very late point in the sequence is a
very small perturbation that brings x into UC , contradicting with the stability
of U .

From now on, we only discuss stability, for it is a more natural setting for
subsequent concepts.
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1.2 Map and Shape

Ultimately, we would like to say two spaces have the same shape if there is
a homeomorphism between them, just like two vector spaces are isomorphic if
there is a linear isomorphism between them. Just as a linear isomorphism is a
linear map with an inverse linear map, a homeomorphism is a continuous map
with a continuous inverse. We would like to explain what a continuous map is
and why a continuous map with a continuous inverse means the domain and
codomain have the same shape.

We start with continuous map, and we link it to stability. We will show that
continuous maps may stretch, bend and collapse, but may not tear. Therefore,
a continuous map preserves the shape in one direction (but not both because
it may collapse, e.g. the whole space may be collapsed to a point). Then, if
a continuous map has a continuous inverse, then collapse is also impossible,
because collapse amounts to tearing by the inverse map.

Concept 8 (Continuous Map). A continuous map is a map that is stable under
perturbation, in the sense that a tiny (enough) perturbation of the input leads
to a tiny perturbation of the output.

Example 9 (Continuous Map). A differentiable function f : I → R on an open
interval I is continuous, because the perturbation in the output due to a small
perturbation of the input from x0 to x is approximately f ′(x0)(x − x0), which
is small if x− x0 is small.

An elegant way to rephrase continuity is as follows.

Principle 10 (Continuous Map and Stability). A map is continuous if and only
if the preimage of an open set V under the map is open.

Remark. This is usually taken as the definition of a continuous map.

Explanation. This description holds if and only if small enough perturbation of
each point in f−1(V ) is still mapped into V . This is possible if and only if each
point y = f(x) in V is only slightly perturbed (so that it is still inside V ) when
x is perturbed lightly enough.

Now, continuous maps preserve shape to a certain degree. It maps nearby
points (then one is a tiny perturbation of the other) to nearby points. Therefore,
it may stretch and bend a space, but may not tear or pierce it. However, it does
not preserve the whole shape because it may collapse a shape, i.e. far-away
points may still be mapped to nearby points.

Example 11 (Collapse and Tearing).

collapse The map from the unit circle to R defined by projection to the x-axis
is continuous, because the x-coordinate does not change much under small
perturbation. Note that the map does not preserve the shape as it collapse
the circle to the interval, and “annihilates” the hole of the circle.
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tearing The step function f defined on [0, 1] by

f(x) =

{
2 if x ≤ 1/2

5 if x > 1/2

is discontinuous, because any small perturbation of 1/2 to a slightly larger
number leads to a change in the output by 5− 2 = 3, which is not small.
Note that the function f “tears” the interval into two pieces, namely, 2
and 5.

Maps that truly preserve shape are called homeomorphism.

Definition 12. A map f : X → Y is said to be a homeomorphism if and only
if it is bijective, and f and f−1 are both continuous. Two spaces are said to be
homeomorphic if and only if there exists a homeomorphism between them.

Now, homoemorphism rules out collapse because whenever two far-away
points are mapped to nearby points, that means the inverse map maps nearby
points to far-away points, contradicting with the continuity of the inverse map.

Example 13 (Homeomorphism). The unit circle {(x, y) : x2 + y2 = 1} and the
boundary of the “unit” square

[−1, 1]2 \ (−1, 1)2 = {(x, y) : max(|x|, |y|) = 1}

are homeomorphic. For a homeomorphism, consider the “projection” defined
by mapping each point p of the unit circle to the intersection of the ray from the
origin through p and the square. Note that the circle and the square have the
same shape, e.g. they both have a hole, to distinguish them from a θ-shaped
space.

Example 14 (Non-Homeomorphism). The map f from [0, 2π) to the unit circle
defined by

f(t) = (cos t, sin t)

is a bijective continuous map, but its inverse is not continuous, as witnessed by
the tearing of a small arc centered at (1, 0) to two pieces, one near 0 and one
near 2π. Note that [0, 2π) is a different shape from the unit sphere; the former
has no whole while the latter has one. One way to show the two spaces are not
homeomorphic is to observe that the circle is still one connected piece when any
point is removed, but removing a nonzero point, say 1, from [0, 2π) gives rise to
two pieces.

1.3 Further Readings

This note was written becuase I could not find a chapter-length overview of
general topology. More lengthy expositions abound across different levels of
difficulty. [Arnold, 2011] is a gentle introduction to the intuitive concepts in
topology. Prof. Hatcher’s note [Hatcher, 2005] strikes a good balance between
rigor, intuition (and length!). [Munkres, 2000] is a standard textbook of the
field. [Engelking, 1989] is a standard reference of the field.
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