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Proposed Filtration: RDAD (and

The traditional distance filtration can

o pick up big holes,

€ but it cannot detect small holes.

The proposed filtration RDAD and DAD can
pick up small holes.

In particular, RDAD can

o pick them up robustly and

o pick them up with a confidence band
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What’s the Math Behind?

Main ideas

* DAD scales distance with density, to
magnify small holes surrounded by high-
density regions (Bell et al 19, Hickok 22)

* RDAD considers averages of a few
nearest points (by density-aware
distance) (Chazal et al 18)

* Bootstrapping by subsampling from the
dataset gives confidence bands (Chazal
et al 18)

Nice properties

+ Scale-invariance

+ Robustness against Additive Noise and
Outliers

Our paper

¢ C. Siu, G. Samorodnitsky, C. Yu, and A. Yao: Detection of
small holes by the scale-invariant Robust Density-Aware
Distance (RDAD) filtration (2022).

¢ Our codes: https://github.com/c-siu/RDAD

See our paper for the full bibliography.
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What'’s the Definition?

- X: R random variable with density f

- DAD(x): infimum of the random variable f(X )"Pd(X, x).
+ RDAD(x): average of the lowest quantiles of

fX)Pd(X, x)

1 m
RDAD(x; f,m) = —[ F-l(¢)%dq,
m

where F(r) = P [fCO)"Pd(X, 5 <r| andm € (0,1).

How to Estimate?

* use nearest neighbor distances to approximate the
density

- use the average of the Nm smallestf(Xl-)”Dd(Xl-, X)’s
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