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In the beginning…

there was the data


Credit: NASA/NCSA, University of Illinois

Visualization by Frank Summers, Space Telescope Science Institute

Simulation by Martin White and Lars Hernquist, Harvard University

https://universe.nasa.gov/resources/89/cosmic-web/



In the beginning…

there was the data


and the data was non-parametric, 
 

Credit: NASA/NCSA, University of Illinois

Visualization by Frank Summers, Space Telescope Science Institute

Simulation by Martin White and Lars Hernquist, Harvard University

https://universe.nasa.gov/resources/89/cosmic-web/



In the beginning…

there was the data


and the data was non-parametric, 
and has voids, 

Credit: NASA/NCSA, University of Illinois

Visualization by Frank Summers, Space Telescope Science Institute

Simulation by Martin White and Lars Hernquist, Harvard University

https://universe.nasa.gov/resources/89/cosmic-web/



In the beginning…

there was the data


and the data was non-parametric, 
and has voids, 

and noise is upon the face of the dataset.Credit: NASA/NCSA, University of Illinois

Visualization by Frank Summers, Space Telescope Science Institute

Simulation by Martin White and Lars Hernquist, Harvard University

https://universe.nasa.gov/resources/89/cosmic-web/



Let there be ground truth



Agenda

• Topological Data Analysis: What and Why


• My Work: the Size, the Noise and the Randomness


• Numerical Simulations



Act I
What the Fisher is Topological Data Analysis



Odd One Out

A
 B
 C




Odd One Out

A
 B
 C




Seriously, 
you’re doing this for a PhD?



0 training data 
0 parameters 

100% accuracy 
(for simple datasets)



Topological Features
of the Support of the Density

• i.e. components, loops, cavities and higher-dimensional holes 

one component one component
one loop two loops

one cavity



Topological Features
of the Support of the Density



Estimator? 
Mathematical Algorithm?



Yes!



Pitfall



diagram credit: Andrey Yao



Act II
Small Density Vacuum and How to Find Them Robustly



My Lovely Collaborators

Gennady Samorodnitsky Christina Lee Yu Andrey Yao



Two problems

• Size


• Noise



Two Problems

• Size


• Noise


• Related works


• Hickok (2022)


• Berry and Sauer (2019)


• Moon et al (2018)


• Carlsson and Zomorodian (2009)


• etc…



One solution

• Size


• Noise


• statistical model that highlights small features


• with a provably robust estimator



Size



Grow Balls Slooooooooooooooooooooowly
on the smaller square

• Bell et al, 2019: growing balls at customized rates



Grow Balls Slooooooooooooooooooooowly
on the smaller square

• rate = 1/density1/D



Scale invariance

• uniform scaling —> same persistence diagrams



Theorem
TLDR: Small holes of high-density regions are far from diagonal.

• Let t be a density threshold.


• As in the figure, let M be a “hole” of a high-
density region  with size .


• Under nice assumptions, 
M induces a (D — 1)-dimensional homology 
class 

with persistence at least 

Ω r = max
x∈M

d(x, ∂M)

1

2
t1/Dr − O(m1/D)

: component of the the high-
density region 
Ω

{ξ : f(ξ) ≥ t}

M: bounded component 
of ℝD − Ω



Noise



Outliers



Known Problem, Known Solution

• solution: distance-to-measure


• wait for more balls, and take average


• can leverage empirical process theory


• Chazal et al (2011), Chazal et al (2018)



Robust Density-Aware Distance 
(RDAD)



                 
DTM(x) =

1
m ∫

m

0
G−1

x (q)2dq

Gx(r) = P{d(x, X) ≤ r}

RDAD(x) =
1
m ∫

m

0
F−1

x (q)2dq

Fx(r) = P{d(x, X)f(X)1/D ≤ r}

Robust Density-Aware Distance function



Outlier



Weighted distance v.s. RDAD



Theorem

• Let  and  be two densities.


• Under nice condition, the persistence diagrams of  and  on a 
compact set K have bottleneck distance bounded by


f f̃

RDADf RDADf̃

O(Wp( f, f̃ ) + ∥f − f̃∥∞)



Statistical Convergence?



Theorem

• Let  be iid points sampled from a nice density.


• Then on every compact set K, 
 

X1, . . . , XN

N( ̂RDAD
2

− RDAD2) weakly in L∞(K)
 a centered Gaussian process



Simulations



0



Noisy Voronoi



DTM and RDAD



Cellular Towers



Cellular Towers
(HIFLD, 2021)



DTM and RDAD



Cellular Towers



Epilogue: 
The End of the Beginning



Ongoing / Future Works

• Bootstrapping properties of RDAD?


• Inference of Cosmological Parameters?


• Organic combination of topology and statistics???



Thank you!

• Chunyin Siu (Alex)


• Cornell University


• cs2323@cornell.edu
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