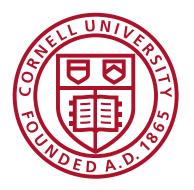
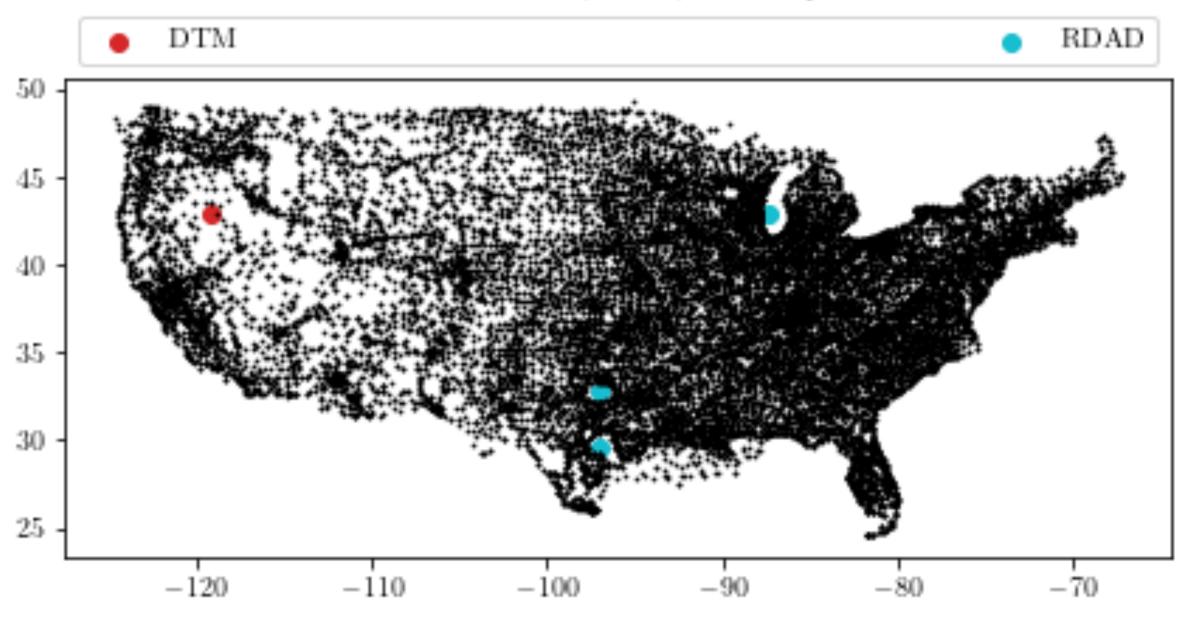
Topological Data Analysis

Detecting Weak Topological Signals in Noisy Environments



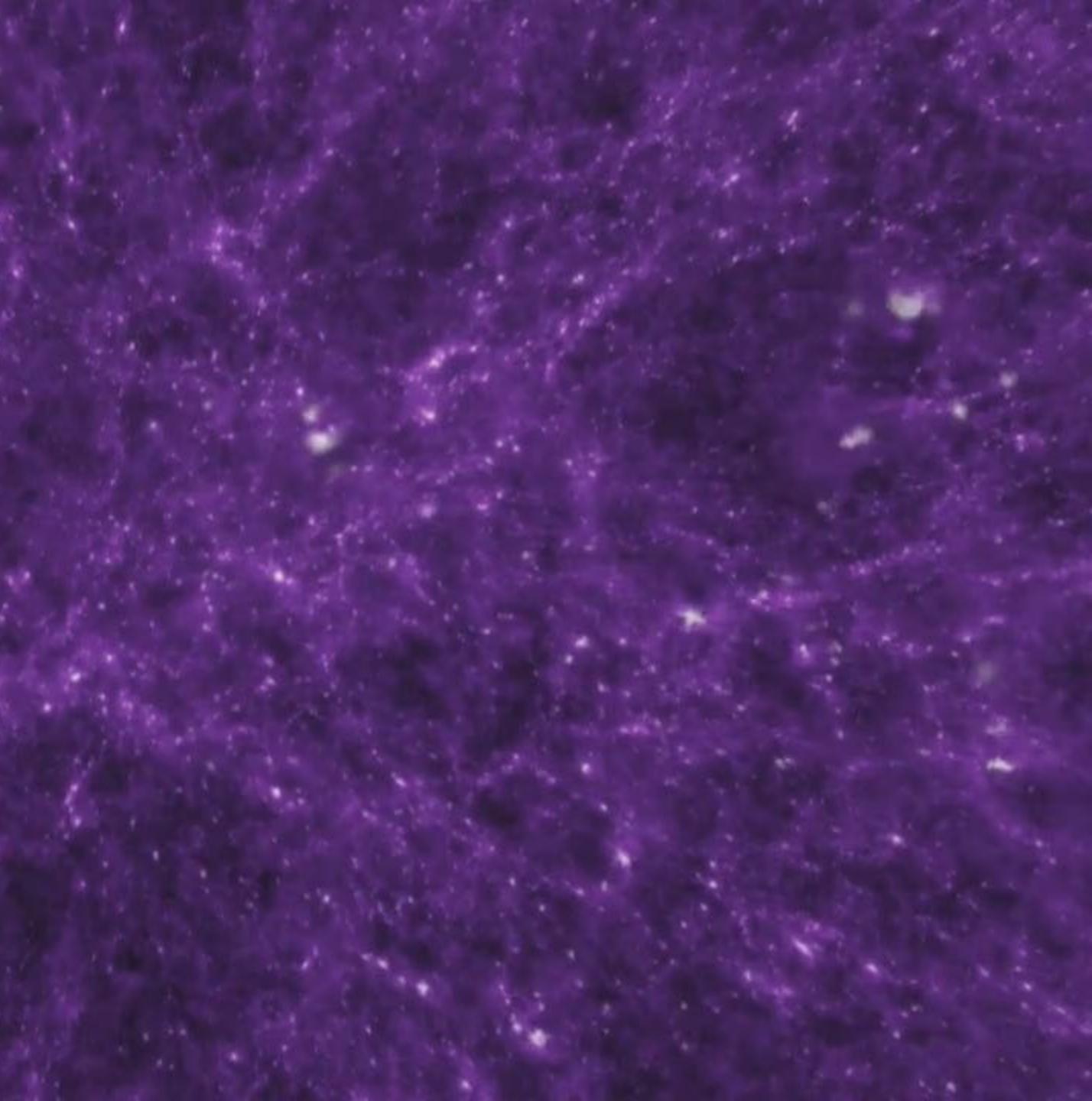
Chunyin Siu (Alex) **Center of Applied Mathematics, Cornell University** cs2323@cornell.edu

cellular tower, clean, subsample



there was the data

Credit: NASA/NCSA, University of Illinois Visualization by Frank Summers, Space Telescope Science Institute Simulation by Martin White and Lars Hernquist, Harvard University https://universe.nasa.gov/resources/89/cosmic-web/



there was the data

Credit: NASA/NCSA, University of Illinois Visualization by Frank Summers, Space Telescope Science Institute Simulation by Martin White and Lars Hernquist, Harvard University https://universe.nasa.gov/resources/89/cosmic-web/ and the data was non-parametric,

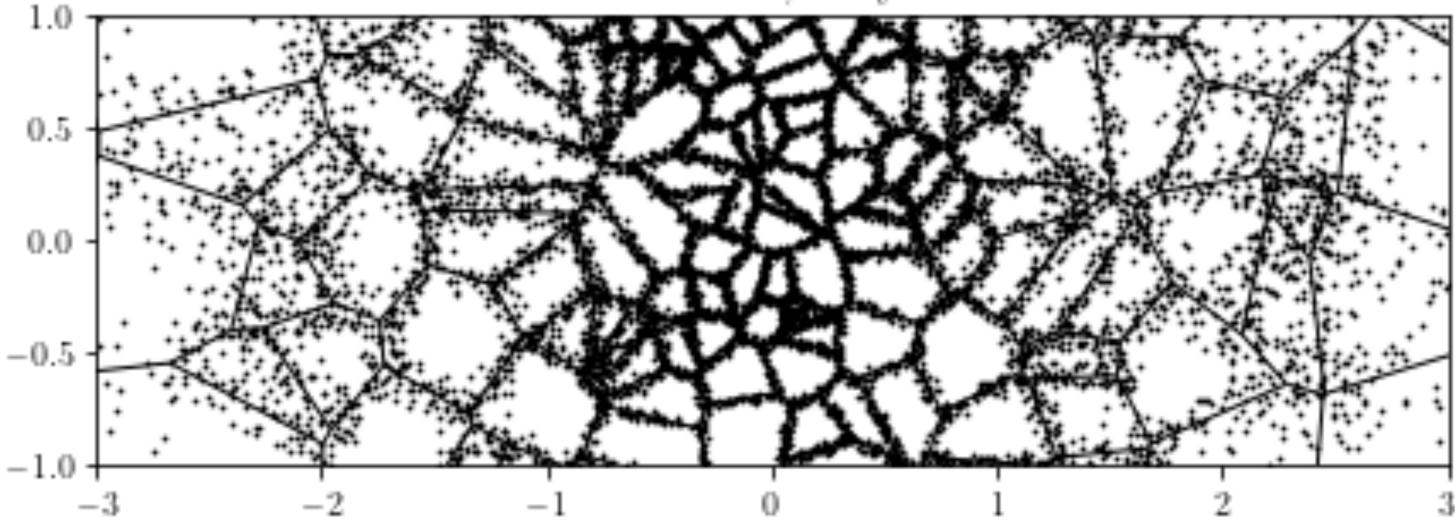
there was the data

Credit: NASA/NCSA, University of Illinois Visualization by Frank Summers, Space Telescope Science Institute Simulation by Martin White and Lars Hernquist, Harvard University https://universe.nasa.gov/resources/89/cosmic-web/ and the data was non-parametric, and has voids,

there was the data

Credit: NASA/NCSA, University of Illinois Visualization by Frank Summers, Space Telescope Science Institute Simulation by Martin White and Lars Hernquist, Harvard University https://universe.nasa.gov/resources/89/cosmic-web/ and the data was non-parametric, and has voids, and noise is upon the face of the dataset.

Let there be ground truth



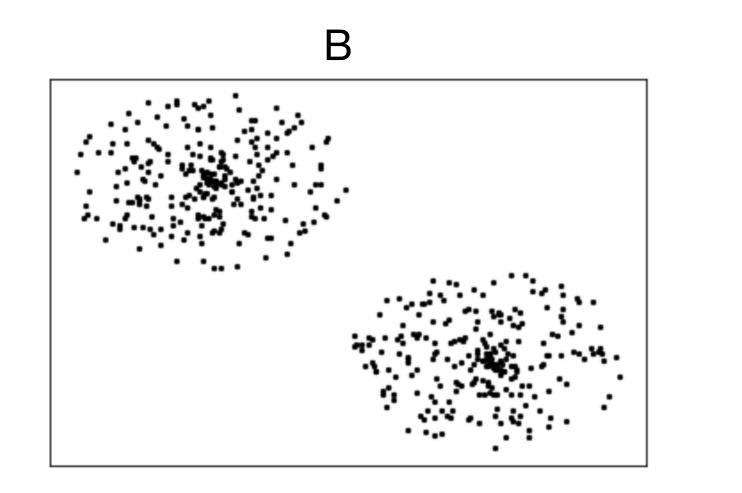
Voronoi, noisy

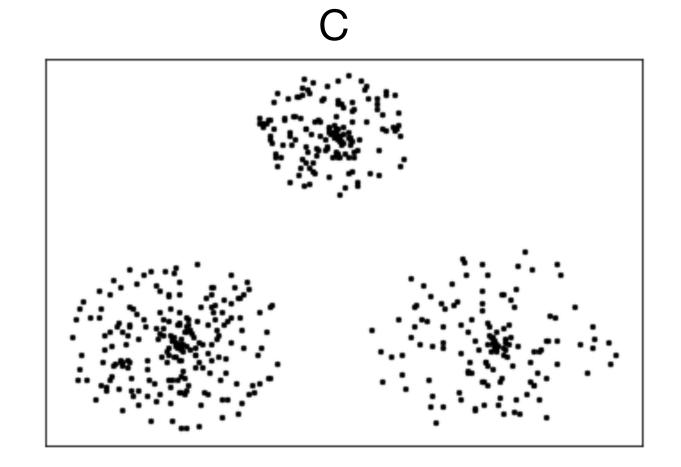
Agenda

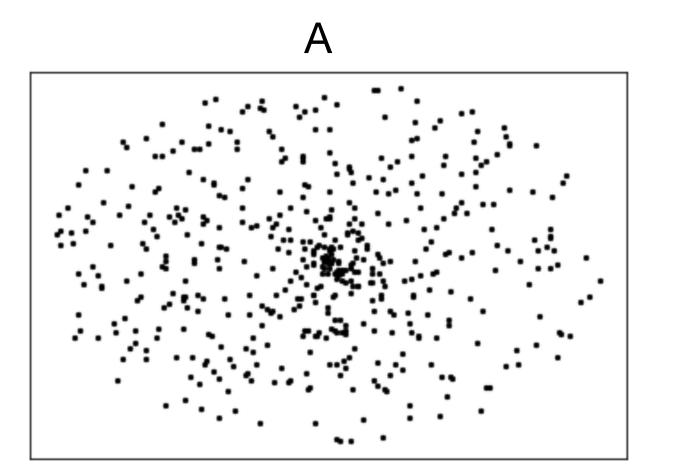
- Topological Data Analysis: What and Why
- My Work: Weak Topological Signals amidst Noise
- Numerical Simulations

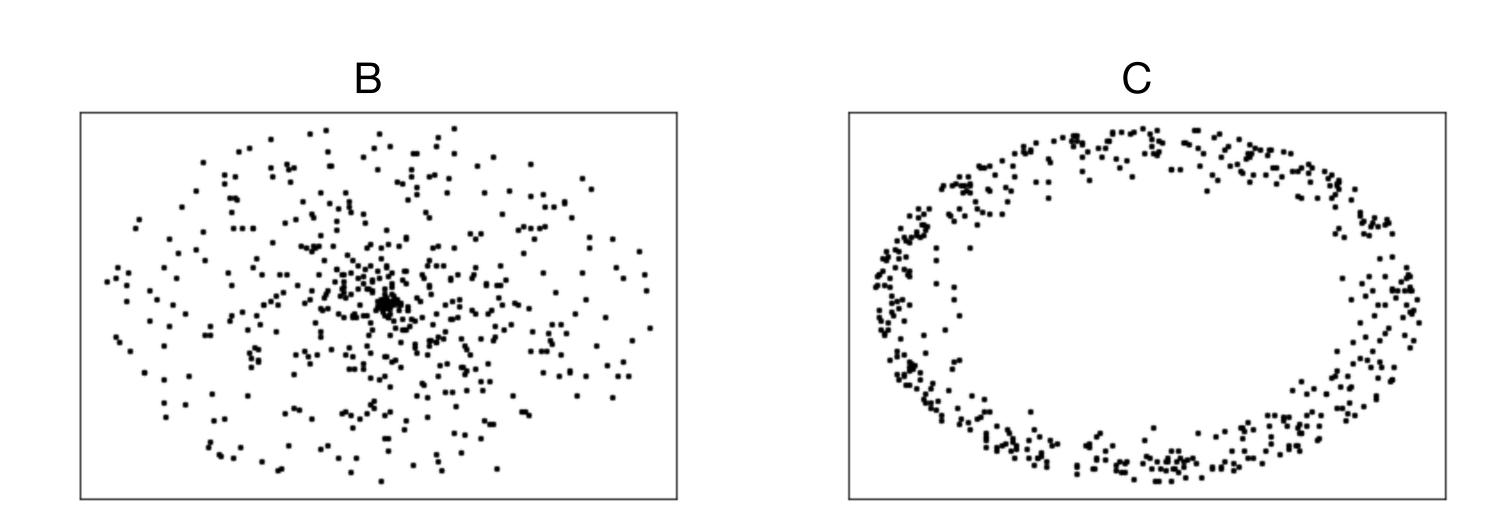
Act I What the Fisher is Topological Data Analysis











Α

В

Α

Photo by David Dibert from Pexels: https:// www.pexels.com/photo/brown-horse-on-grassfield-635499/

Photo by Pixabay from Pexels: https:// www.pexels.com/photo/white-horse-461717/

В

С

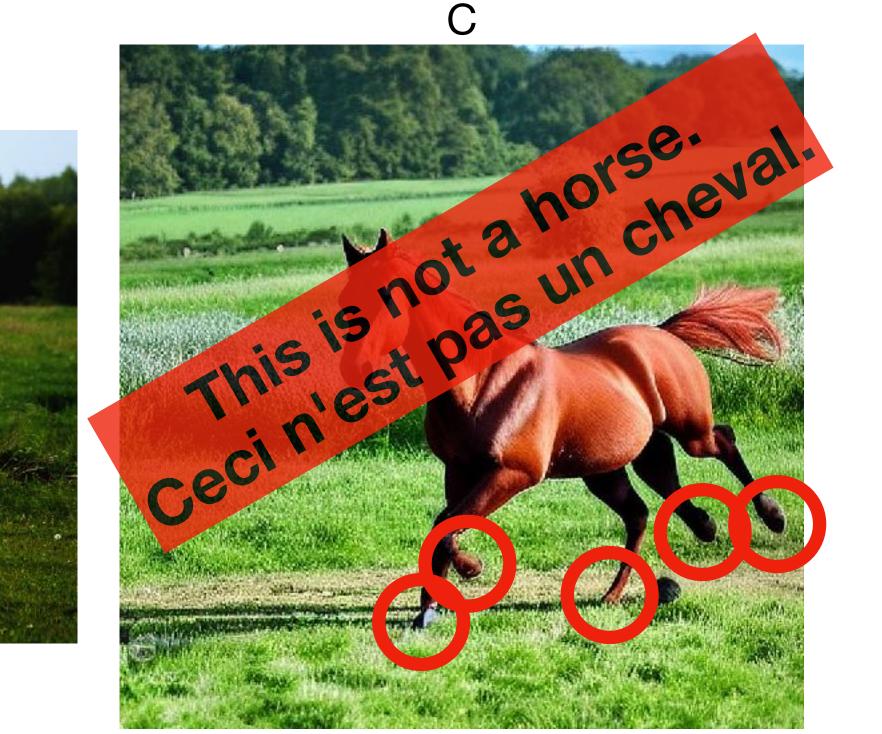
https://twitter.com/fchollet/status/ 1573836241875120128

Α

Photo by David Dibert from Pexels: https:// www.pexels.com/photo/brown-horse-on-grassfield-635499/

Photo by Pixabay from Pexels: https:// www.pexels.com/photo/white-horse-461717/

В



https://twitter.com/fchollet/status/ 1573836241875120128

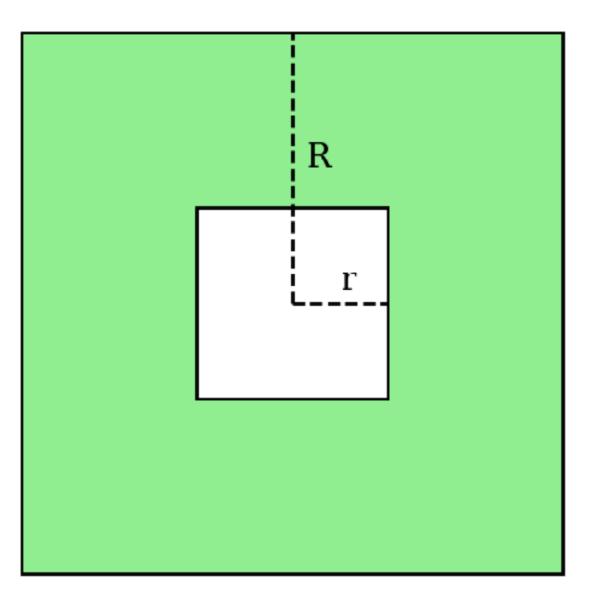
Seriously, you're doing this for a PhD?

0 training data 0 parameters 100% accuracy

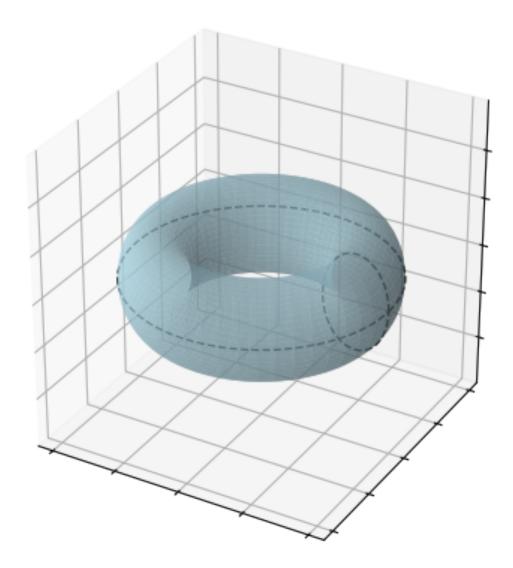
(for simple datasets)

Topological Features of the Support of the Density

• i.e. components, loops, cavities and higher-dimensional holes

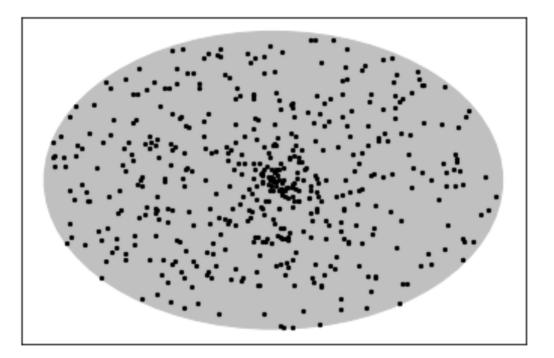


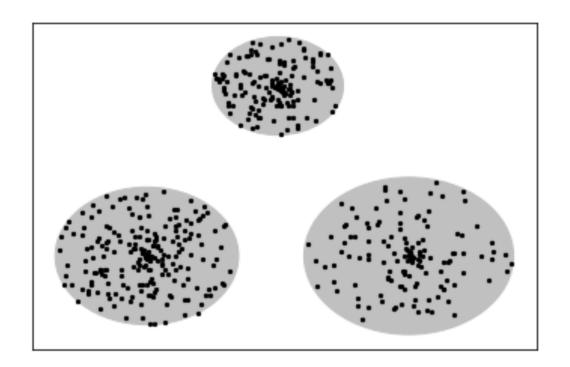
one component one loop

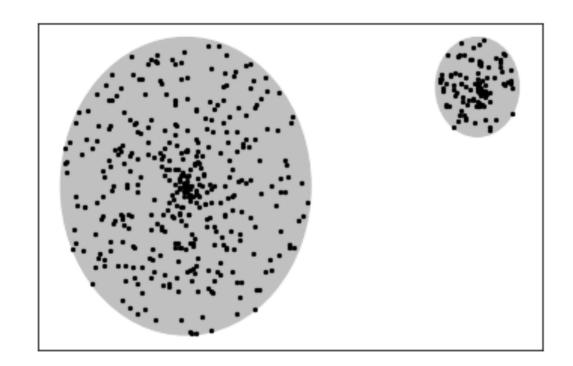


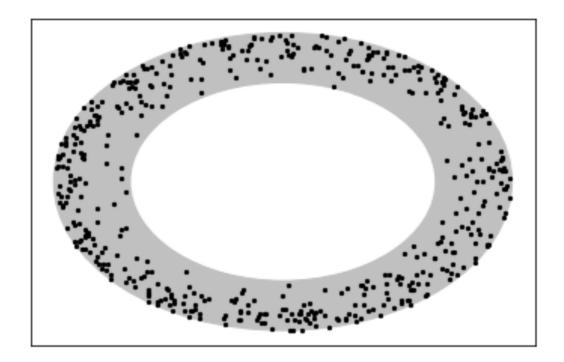
one component two loops one cavity

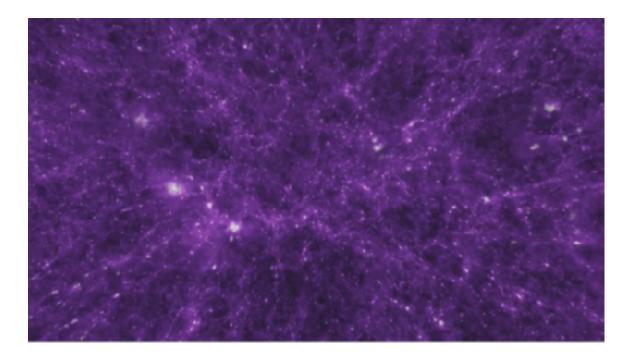
Topological Features of the Support of the Density





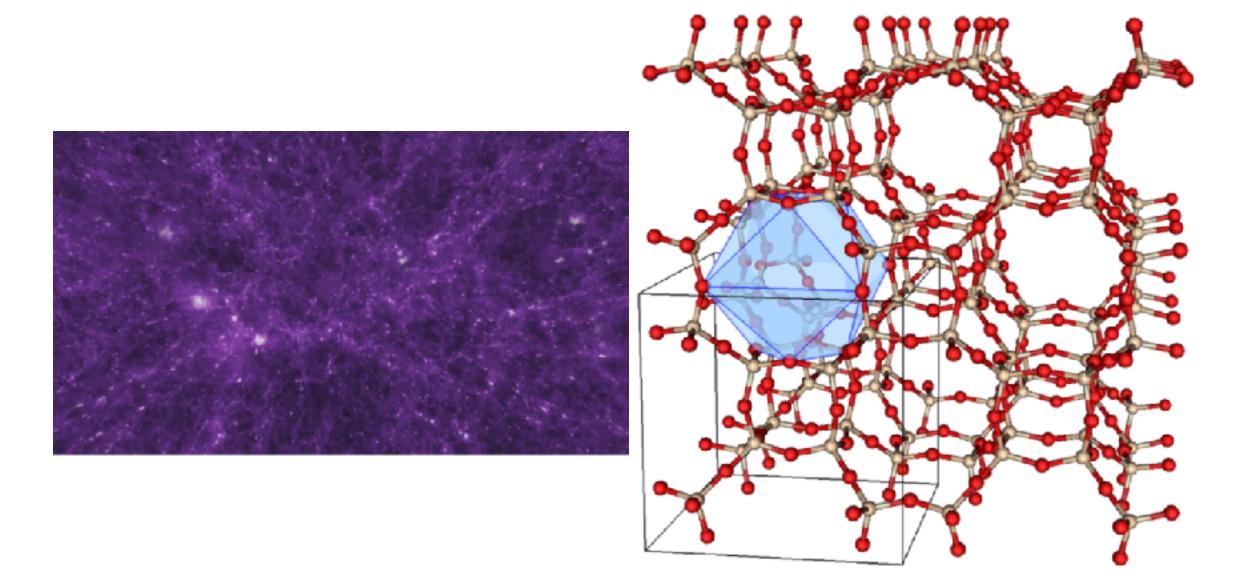






cosmology

Wilding et al 2021

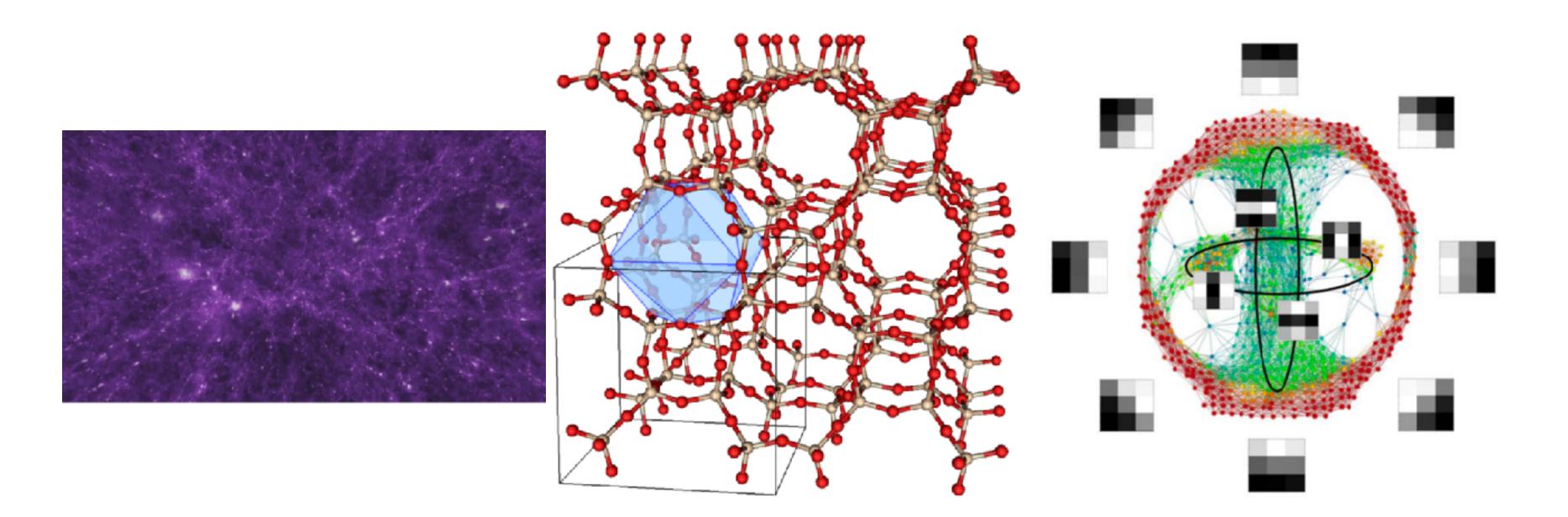


material science

cosmology

Krishnapriyan et al, 2020

Wilding et al 2021



material science

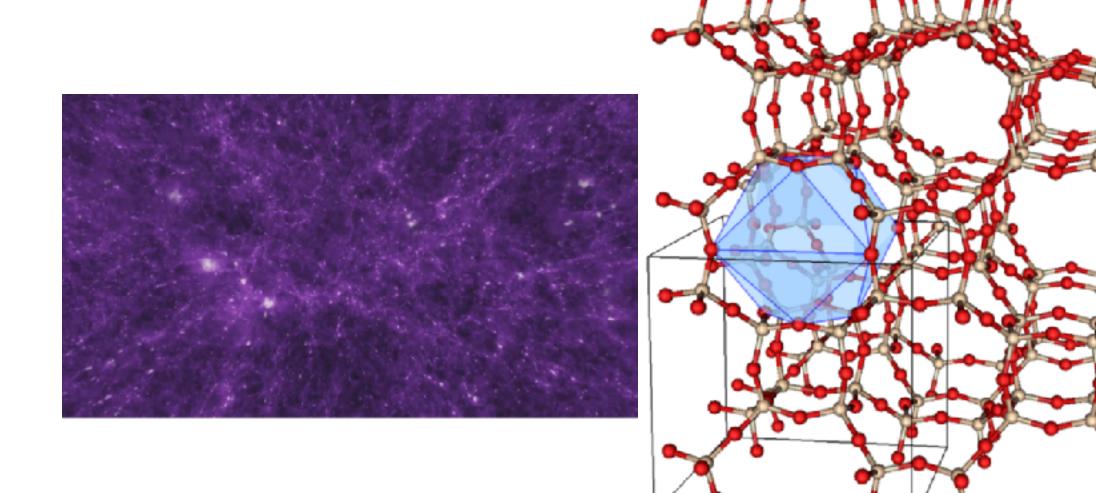
cosmology

Krishnapriyan et al, 2020

Wilding et al 2021

neural network

Gabrielsson and Carlsson, 2019

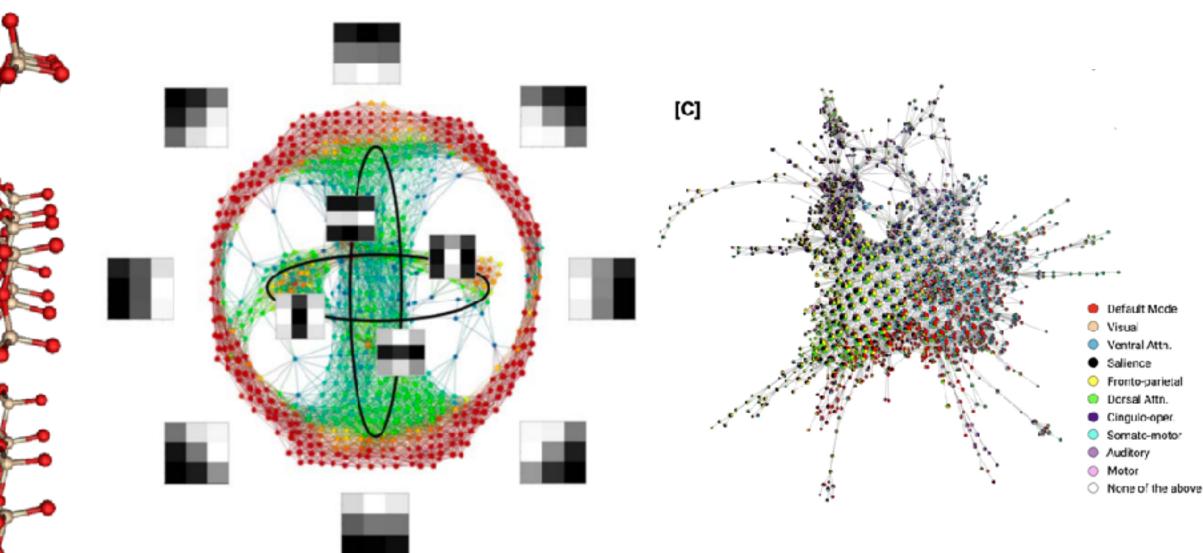


material science

cosmology

Krishnapriyan et al, 2020

Wilding et al, 2021



neural network

Gabrielsson and Carlsson, 2019

neuroscience

Saggar et al, 2022

Interlude Mathematics of Topological Data Analysis

Estimator? Mathematical Algorithm?

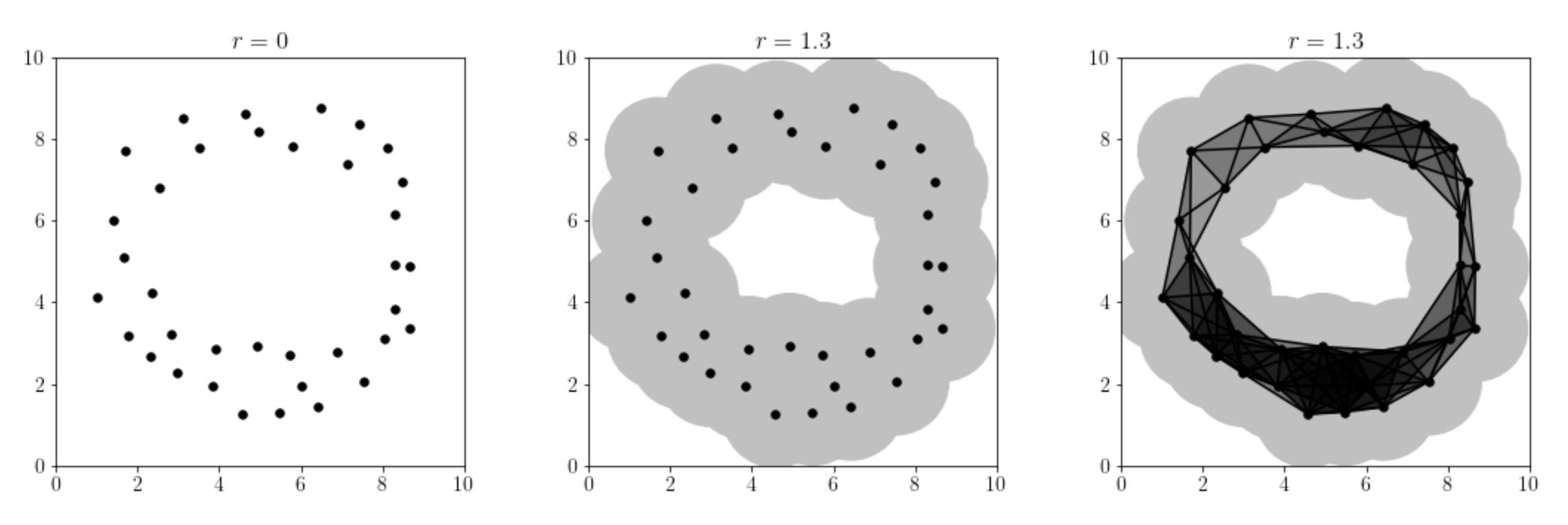


diagram credit: Andrey Yao

Pitfall

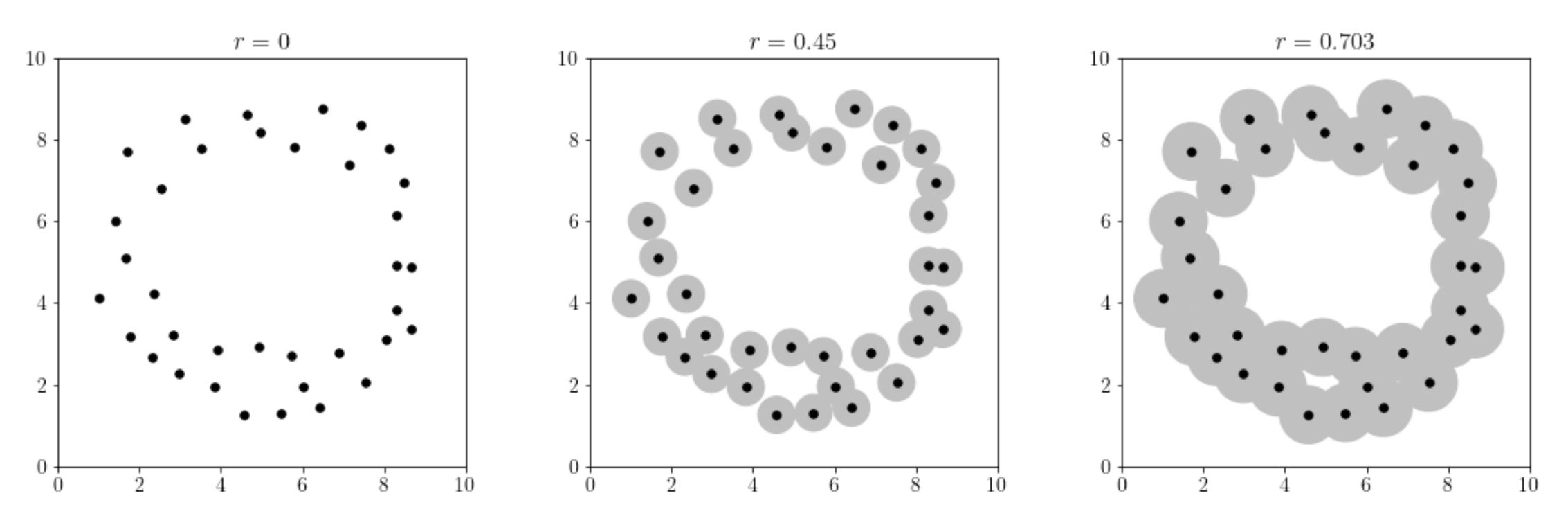
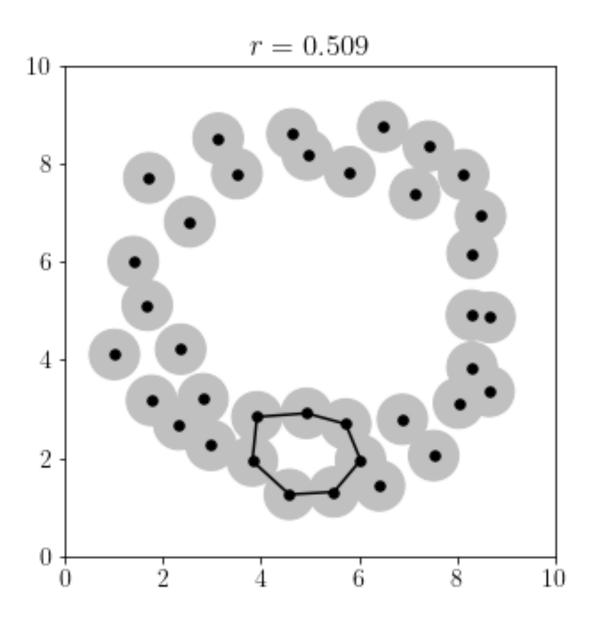
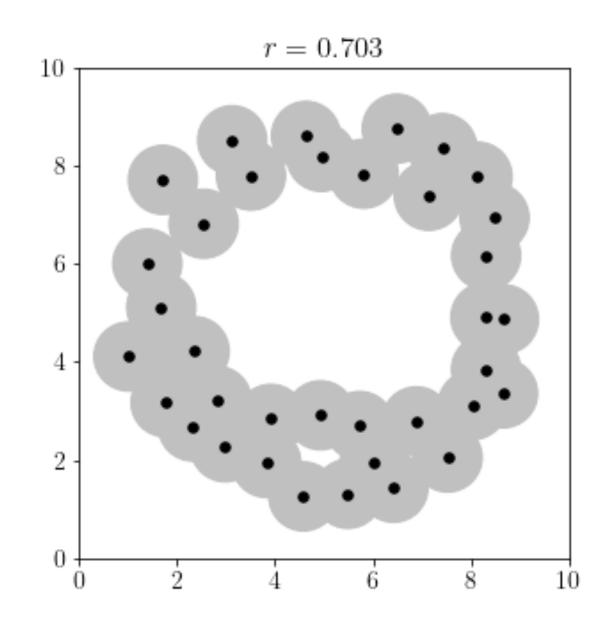
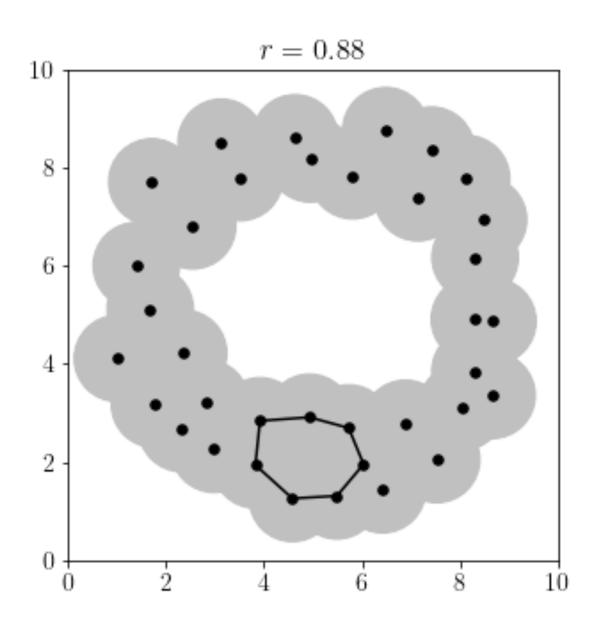
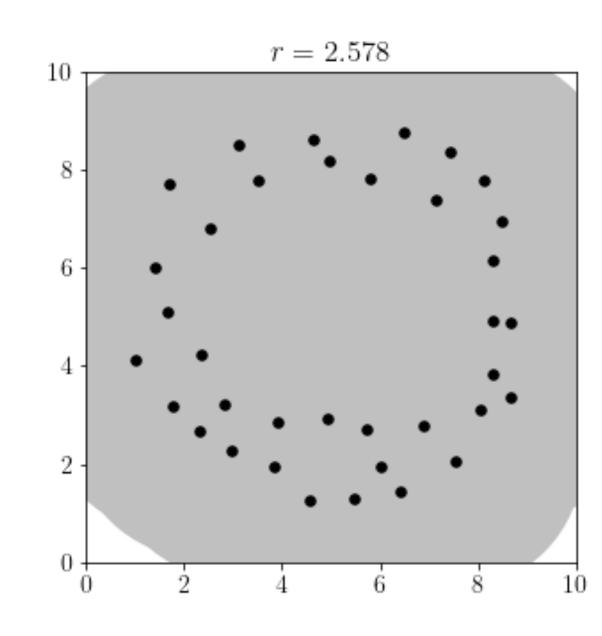


diagram credit: Andrey Yao









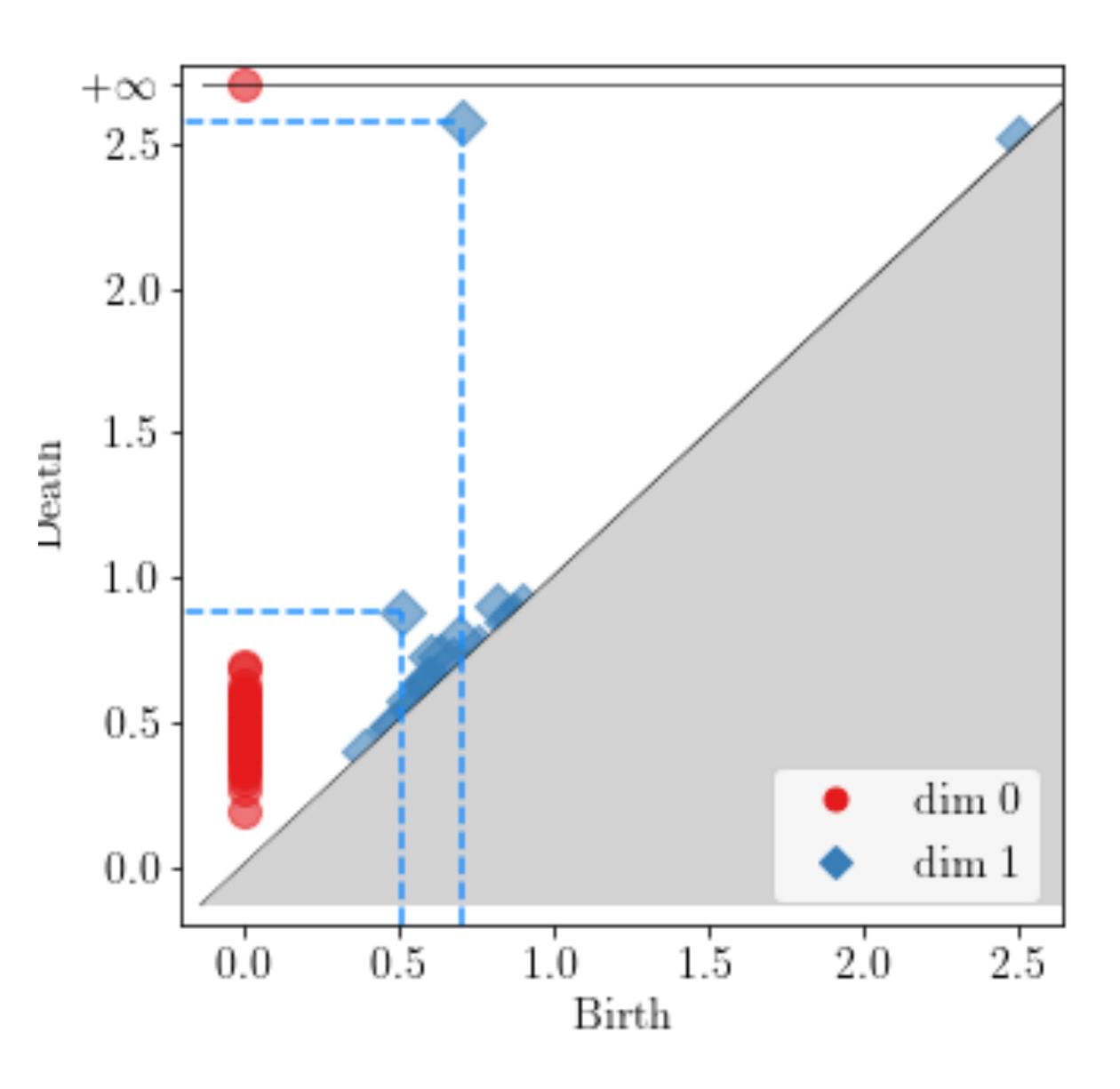
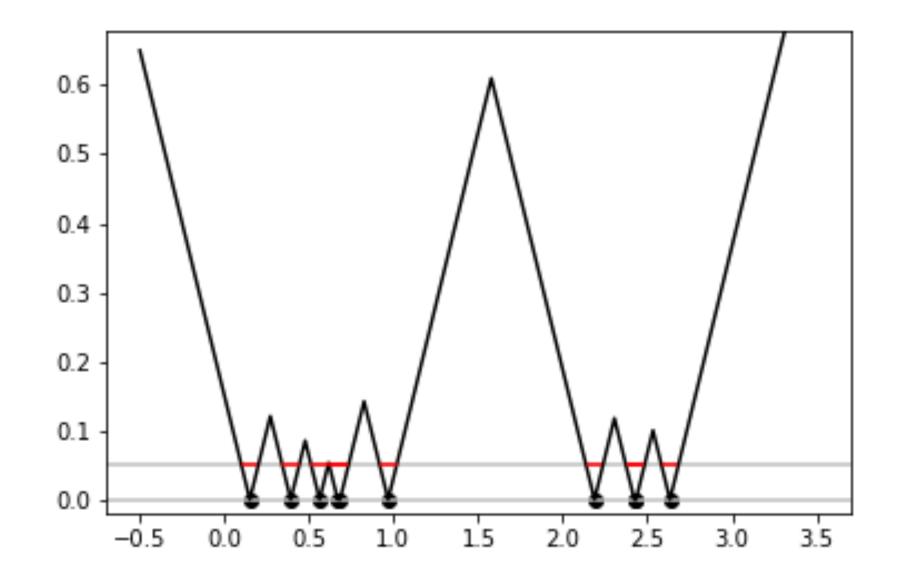


diagram credit: Andrey Yao

The Ground Truth Persistence Diagram?

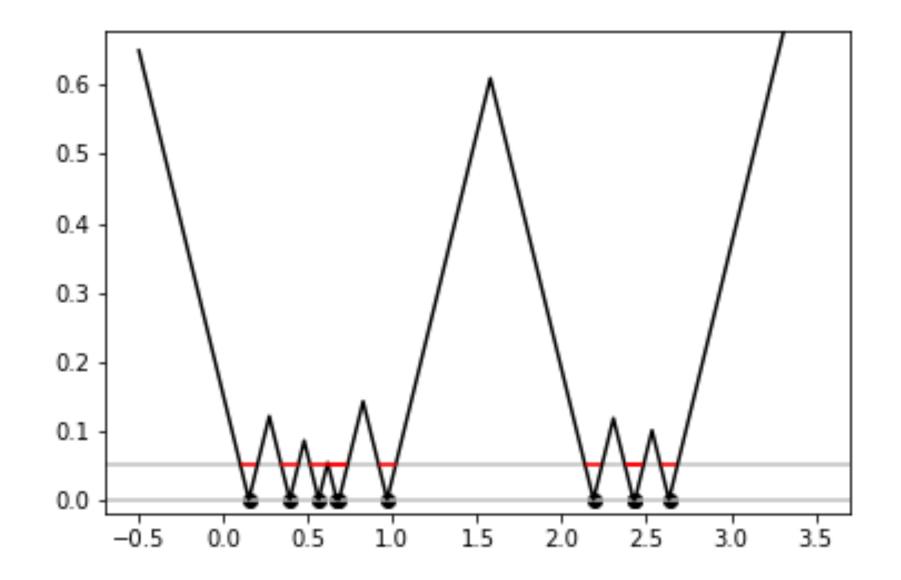
Higher-Dimensional Perspective

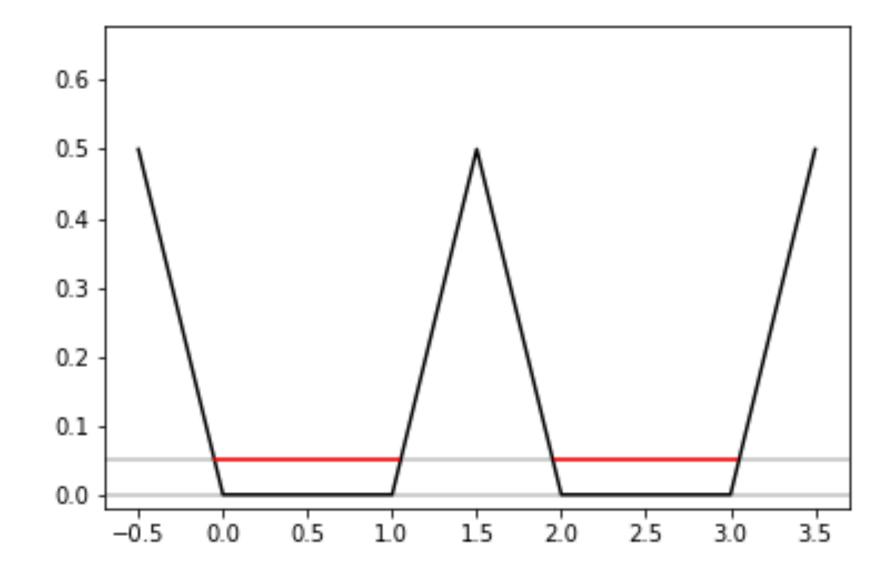
- Balls are lower-level sets of distance function
- $d_{emp}(x) = \min d(x, X_i)$



Higher-Dimensional Perspective

- Estimator of (lower-level sets of) the distance function of the support \bullet • $d_{gt}(x) = \inf d(x, y)$; y ranges over the support of the density





Take-Home Messages

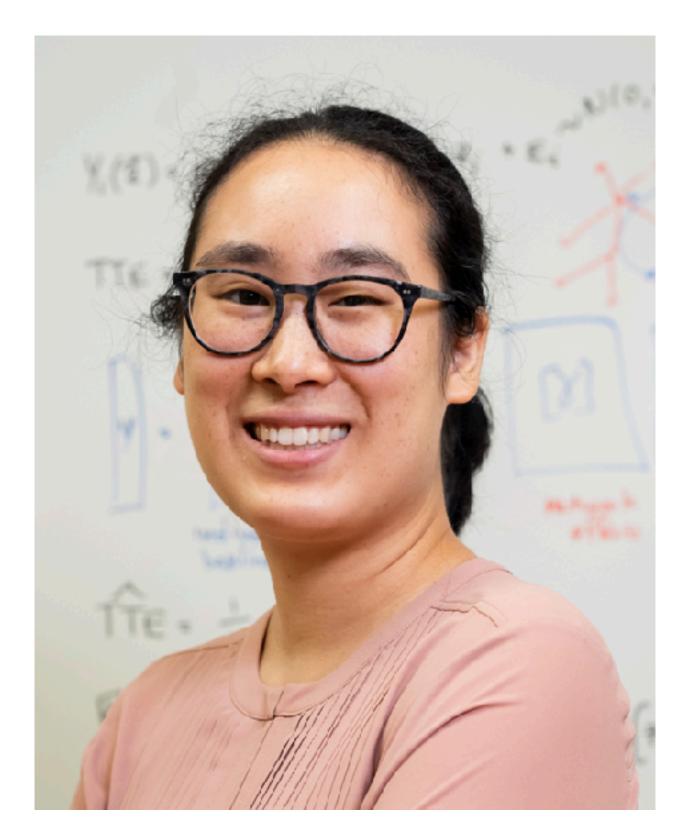
- useful when the dataset has global structures like loops and holes
- these structures can be estimated
- their information can be summarized in persistence diagrams

Act II Weak Topological Signals Amidst Noise

My Lovely Collaborators



Gennady Samorodnitsky

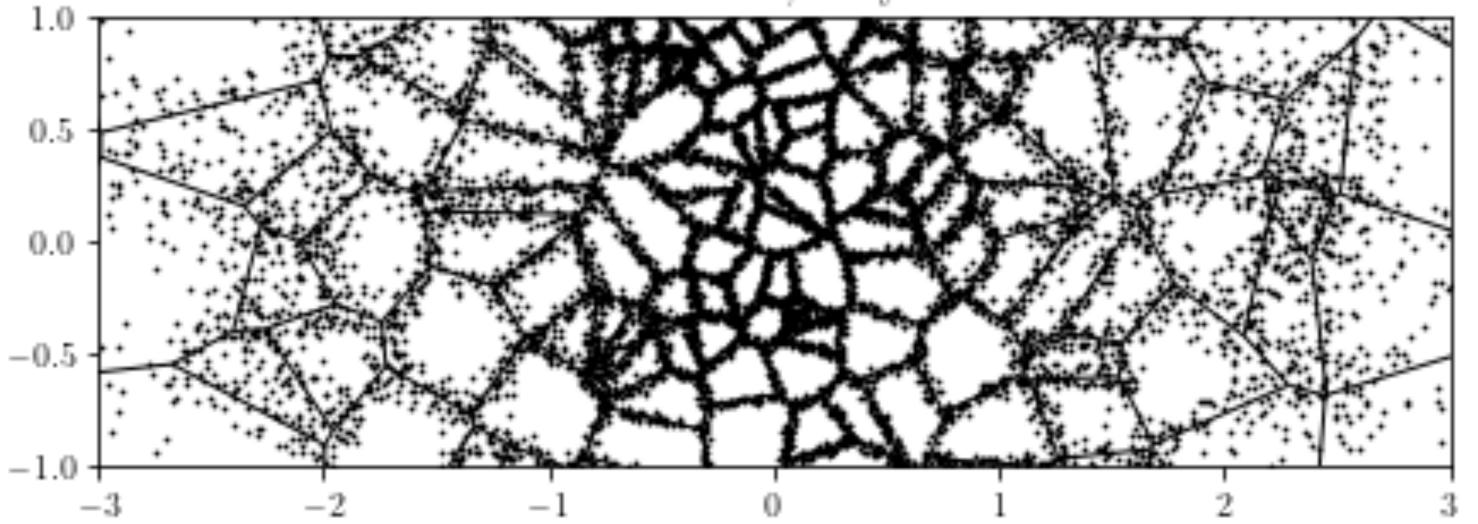


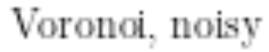
Christina Lee Yu

Andrey Yao

Two problems

- Size
- Noise





Two Problems

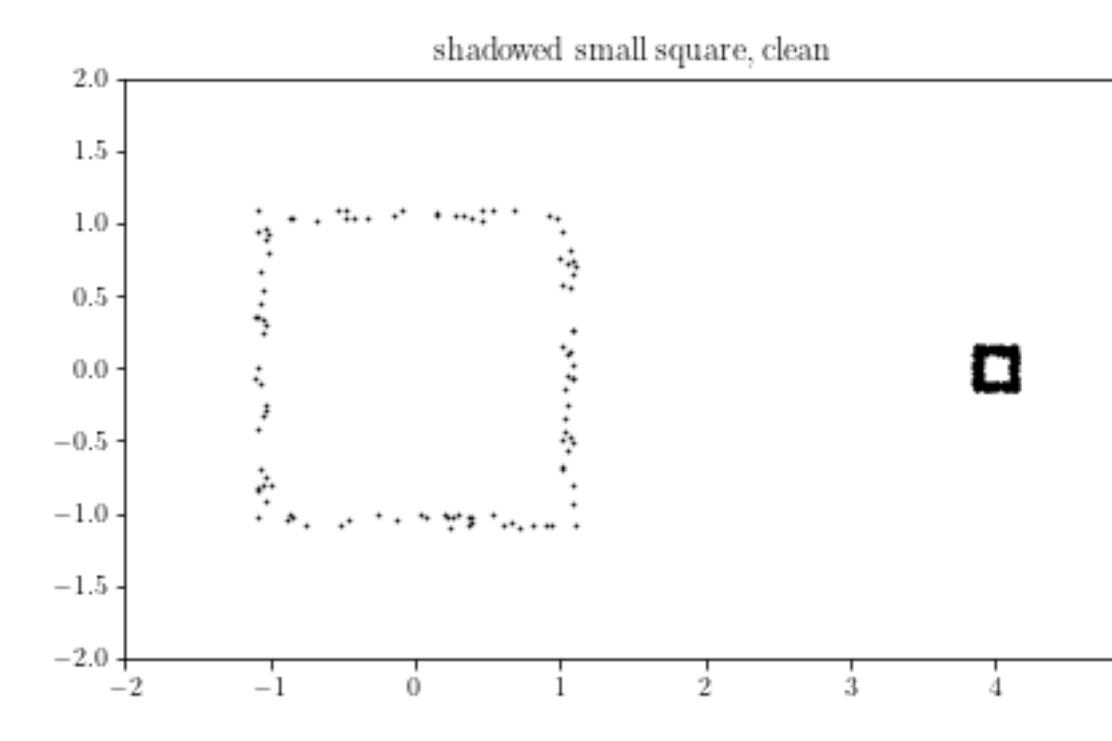
- Size
- Noise
- Related works
 - Hickok (2022)
 - Berry and Sauer (2019)
 - Moon et al (2018)
 - Carlsson and Zomorodian (2009)
 - etc...

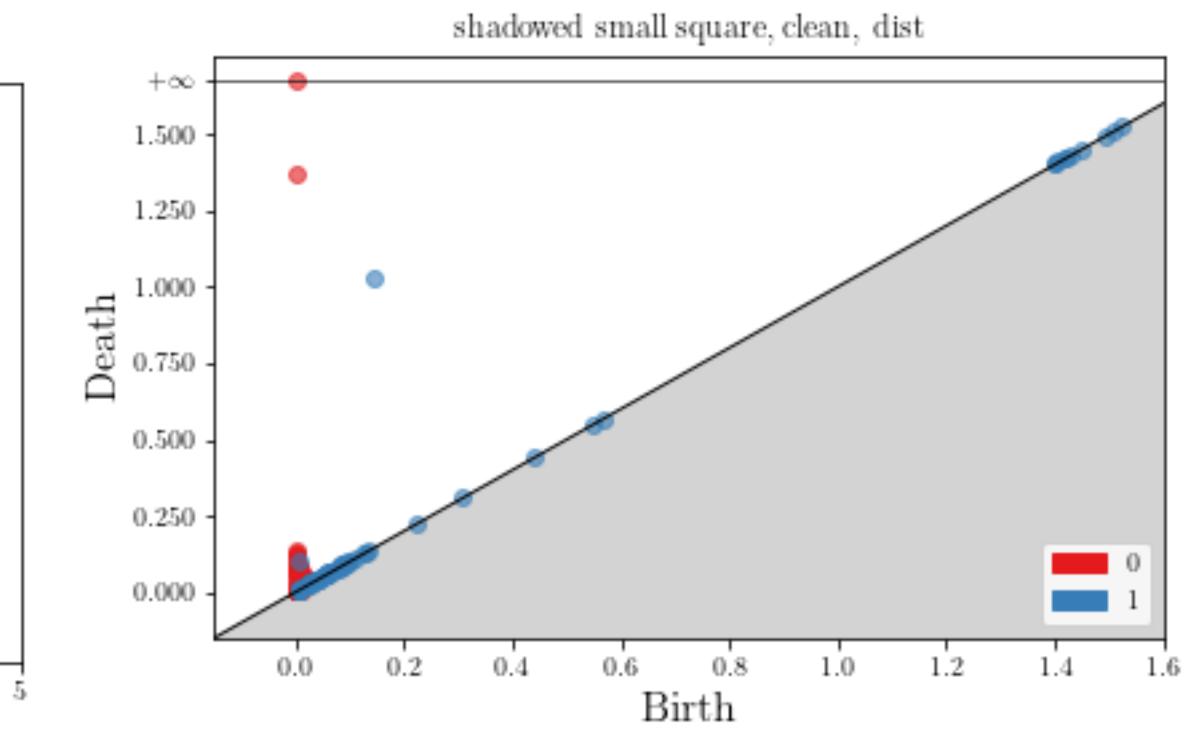
One solution

- Size
- Noise

- statistical model that highlights small features
- with a provably robust estimator

Size

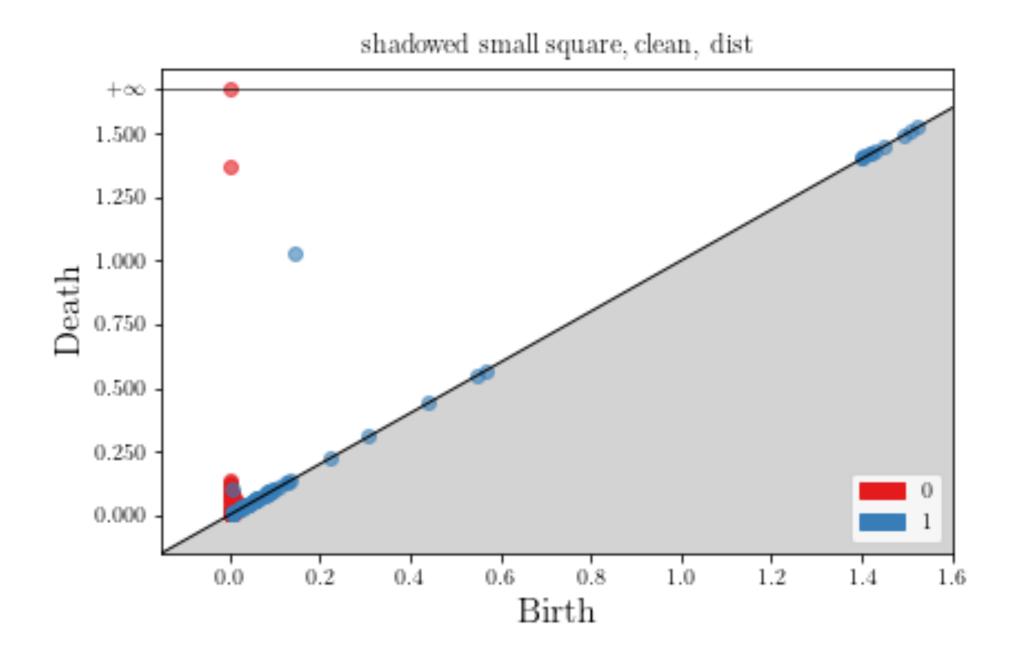




on the smaller square

• Bell et al, 2019: growing balls at customized rates

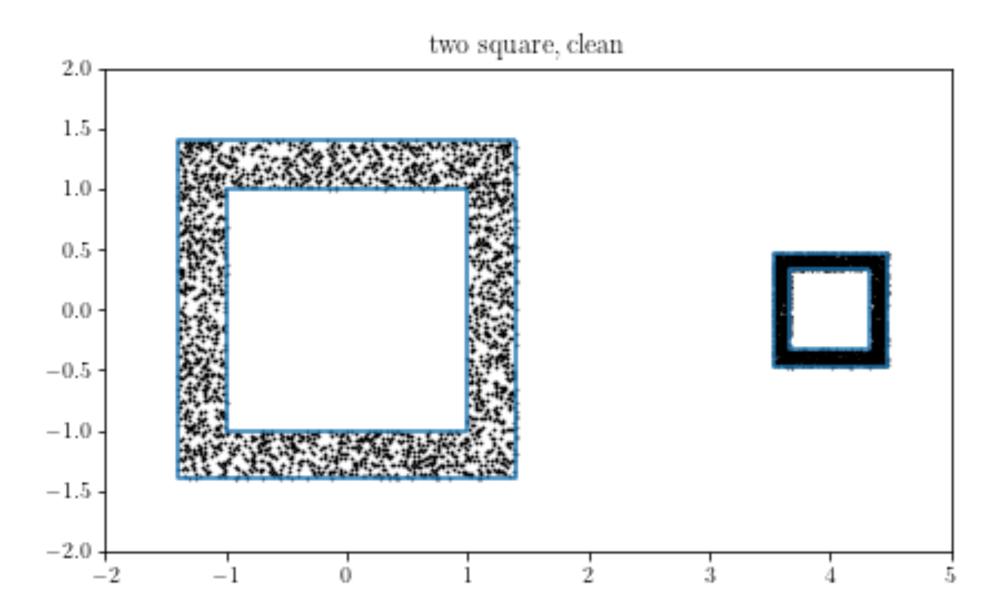
rate = 1/density^{1/D}

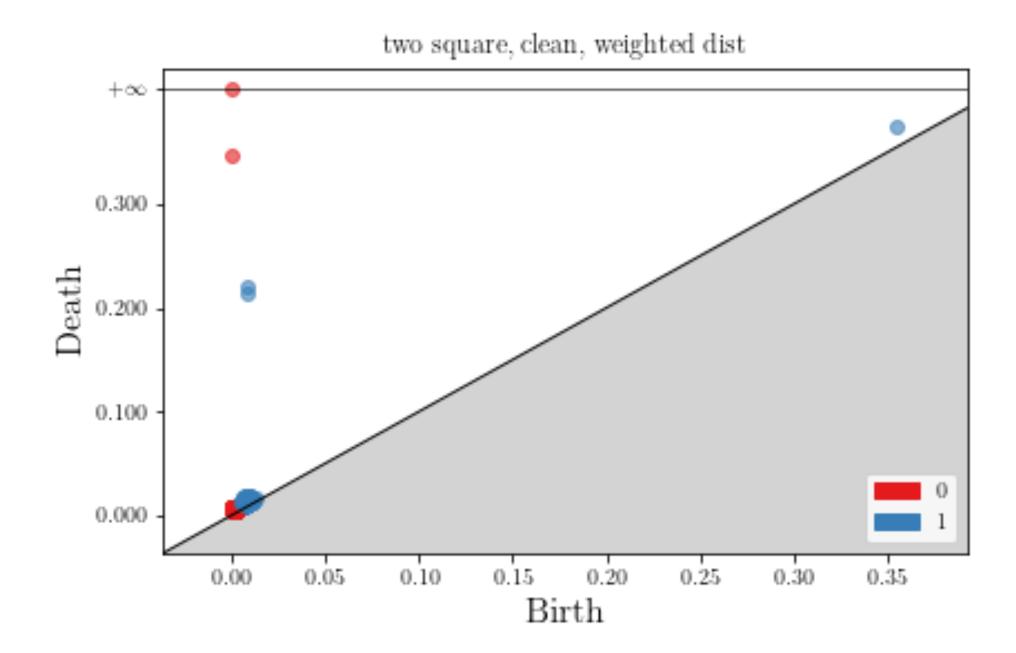




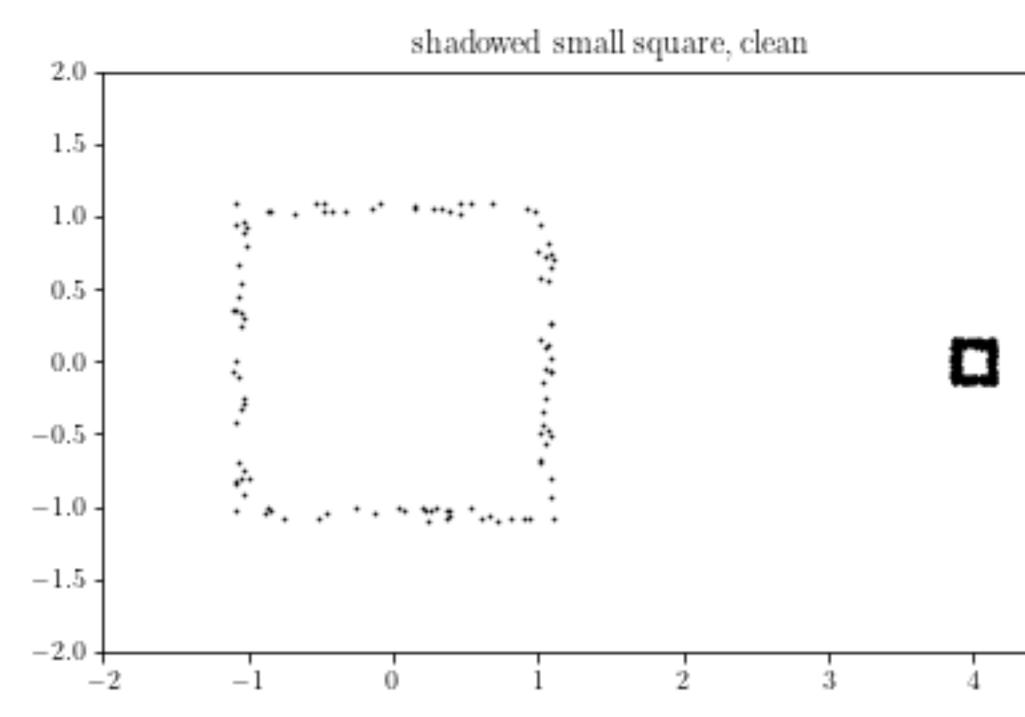
Scale invariance

uniform scaling —> same persistence diagrams





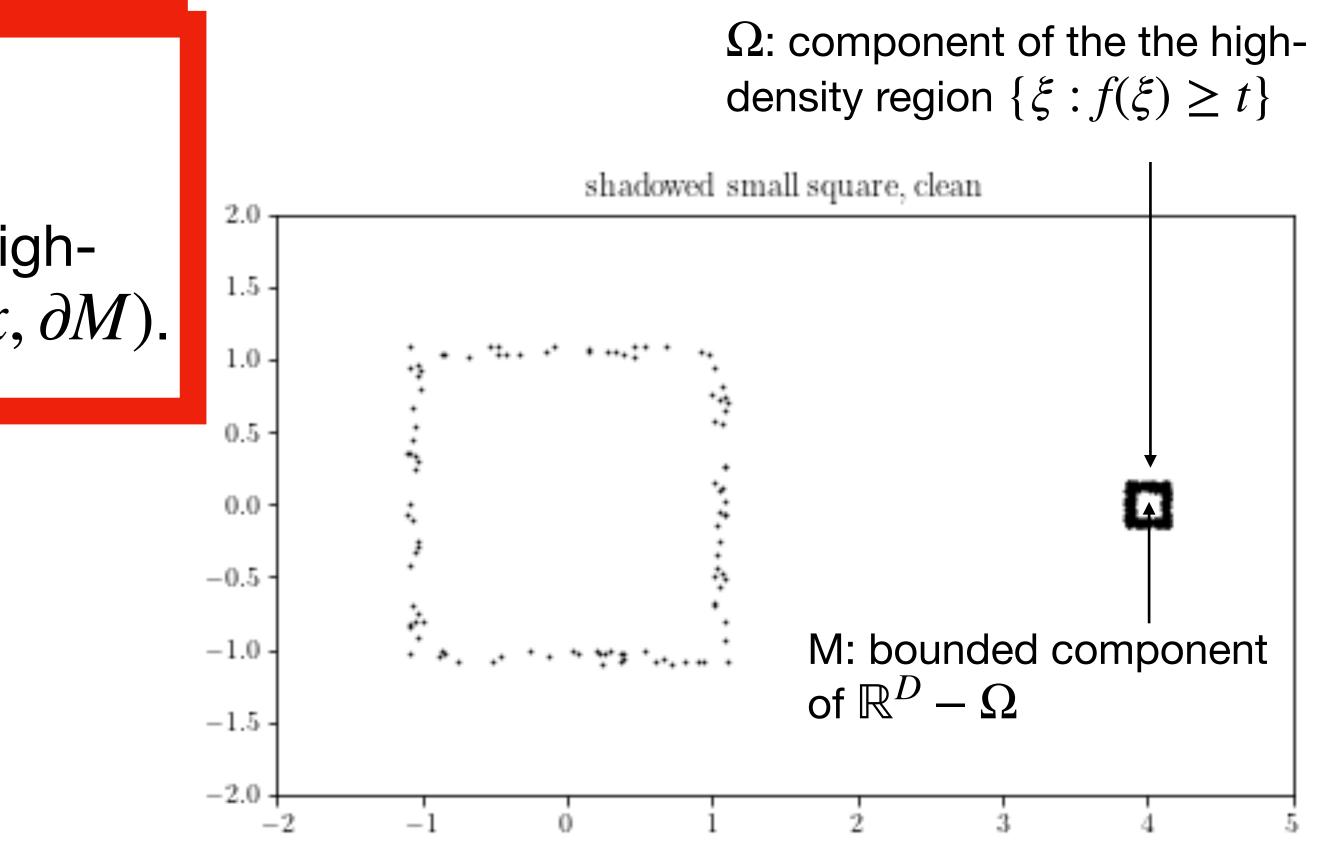
Theorem Small holes of high-density regions are far from diagonal.



Theorem

Small holes of high-density regions are far from diagonal.

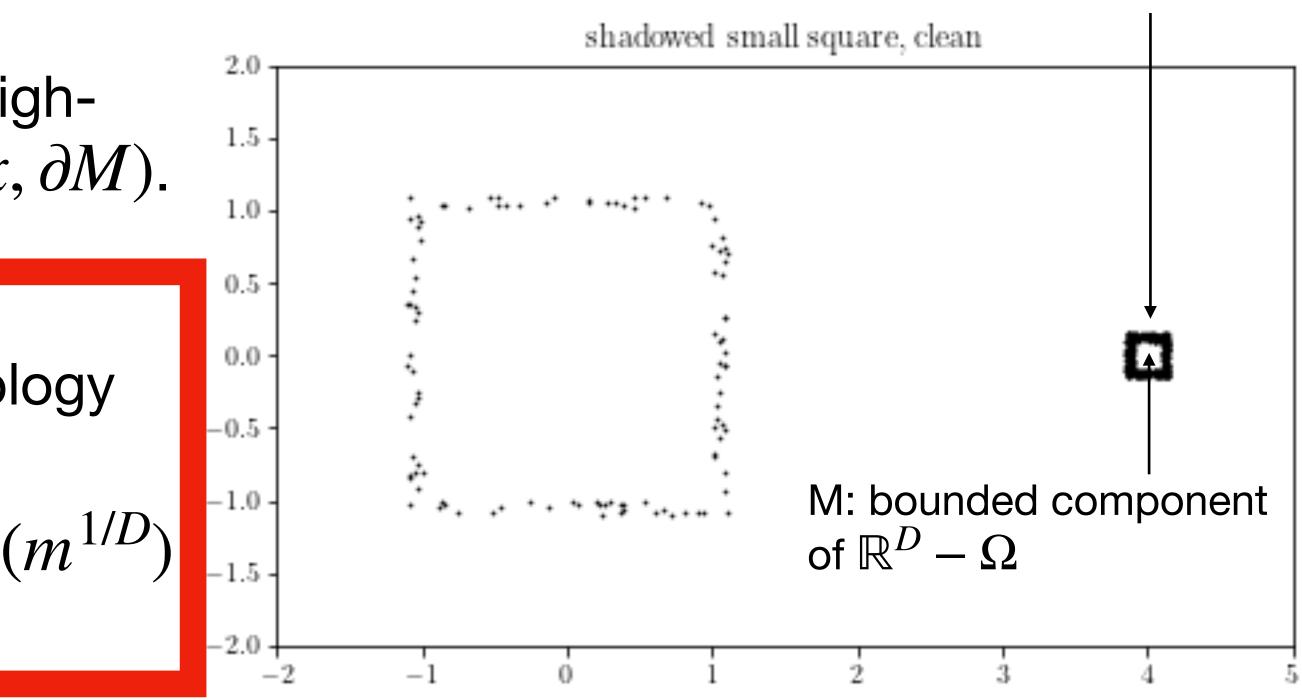
- Let *t* be a density threshold.
- As in the figure, let *M* be a "hole" of a highdensity region Ω with size $r = \max_{x \in M} d(x, \partial M)$.

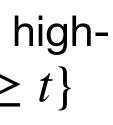


Theorem Small holes of high-density regions are far from diagonal.

- Let t be a density threshold.
- As in the figure, let M be a "hole" of a highdensity region Ω with size $r = \max d(x, \partial M)$. $x \in M$
- Under nice assumptions, M induces a (D - 1)-dimensional homology class with persistence at least $\frac{1}{r}t^{1/D}r - O(m^{1/D})$

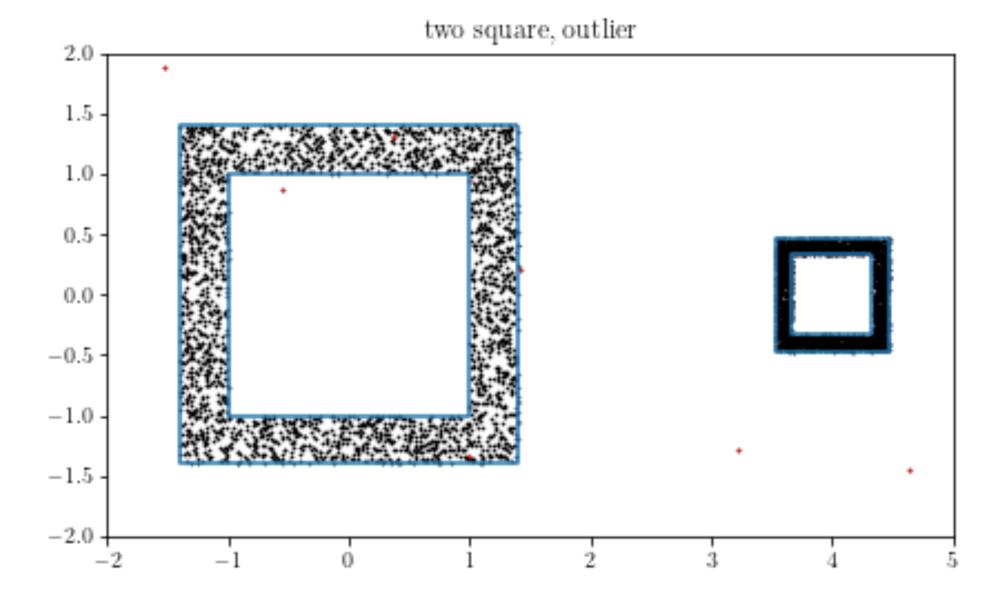
 Ω : component of the the highdensity region $\{\xi : f(\xi) \ge t\}$

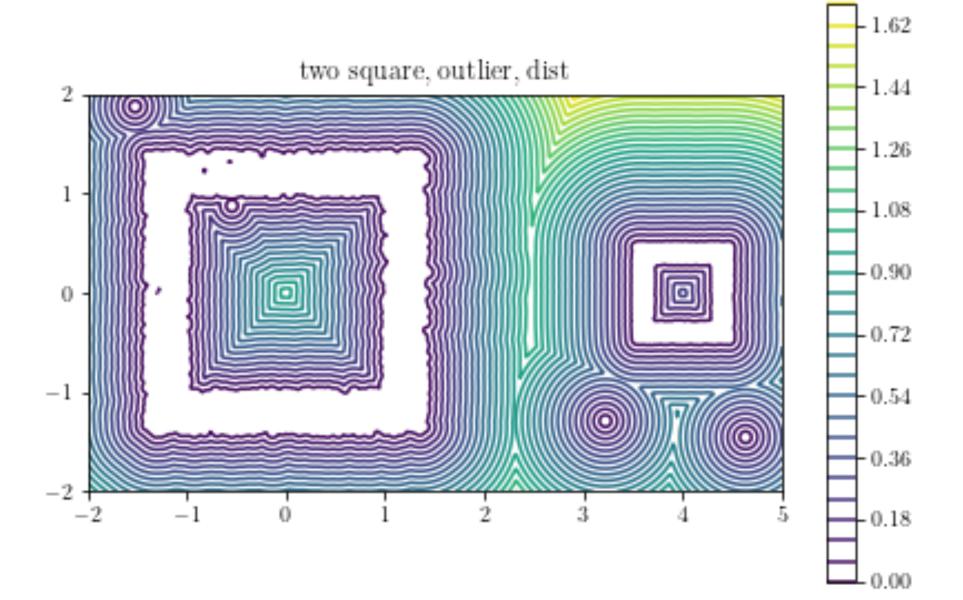




Noise

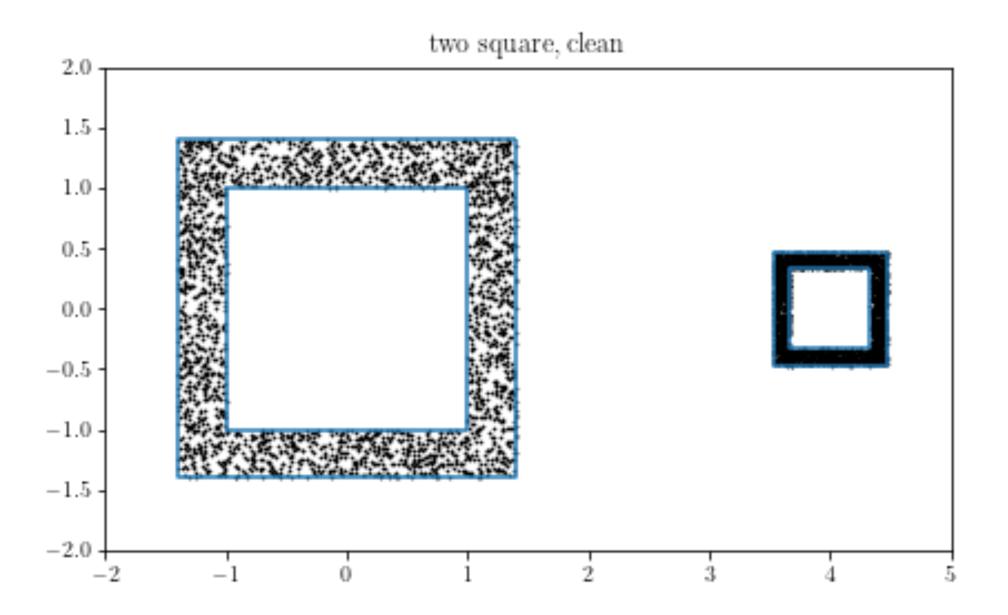
Outliers

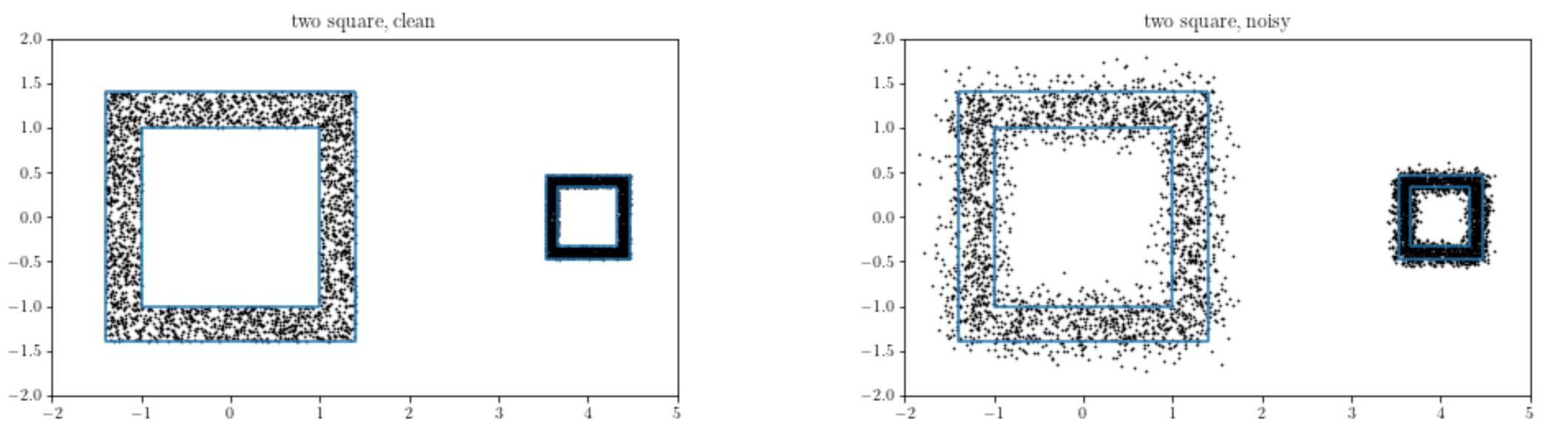




Additive Noise

- $d_{emp}(x) = \min d(x, X_i)$
- $d(x) = \inf d(x, y)$, where y ranges over the support





• $d(x) = \inf d(x, y) = 0$ -th quantile of d(x, .)

- $d(x) = \inf d(x, y) = 0$ -th quantile of d(x, .)
- DTM(x) = average of the first m-th quantiles of d(x, .)

- $d(x) = \inf d(x, y) = 0$ -th quantile of d(x, .)
- DTM(x) = average of the first m-th quantiles of d(x, .)
- can leverage empirical process theory

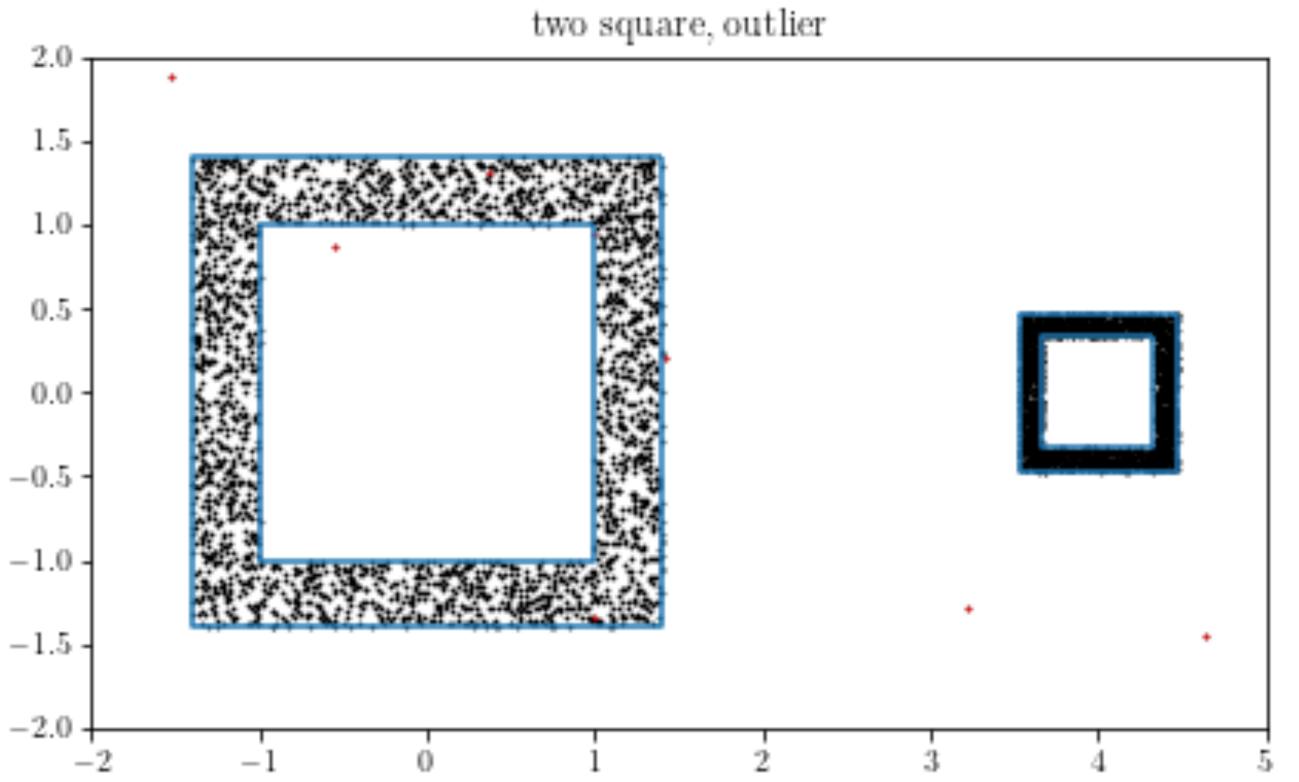
Robust Density-Aware Distance (RDAD)

Robust Density-Aware Distance function

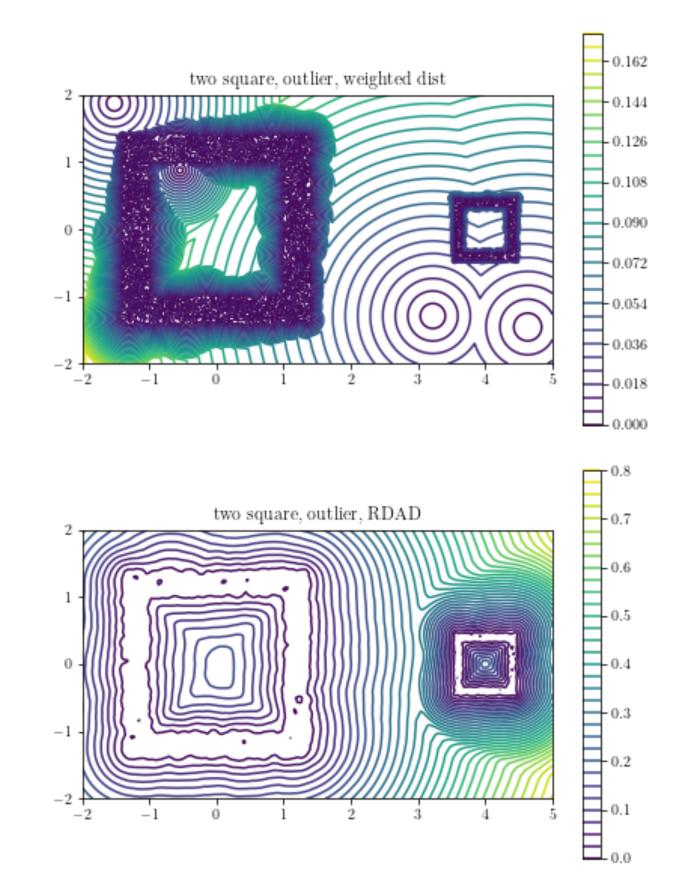
$$DTM(x) = \sqrt{\frac{1}{m} \int_0^m G_x^{-1}(q)^2 dq}$$
$$G_x(r) = P\{d(x, X) \le r\}$$

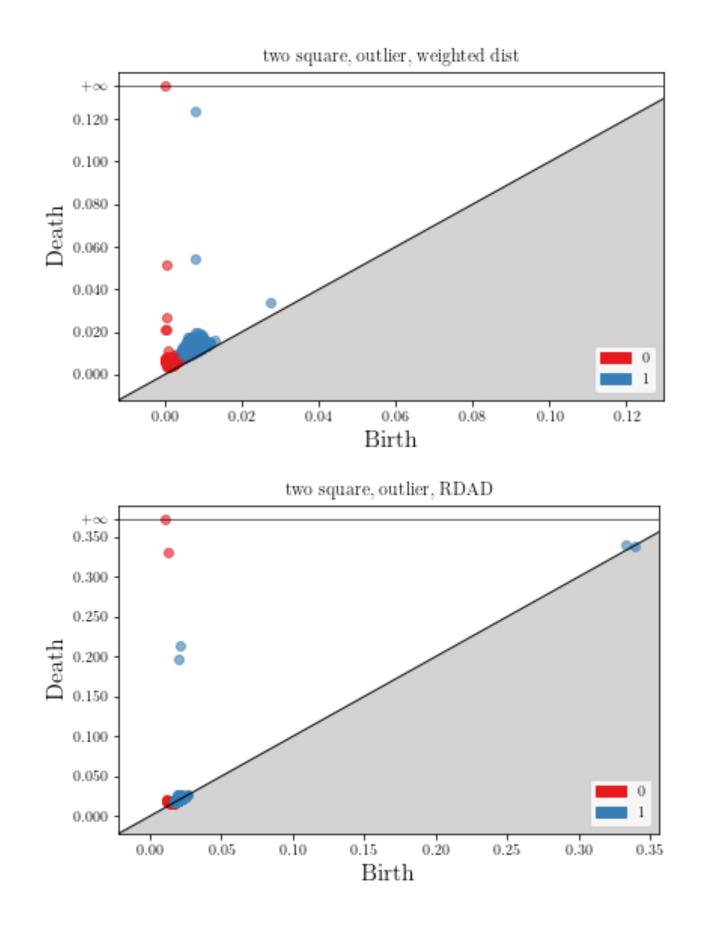
$$RDAD(x) = \sqrt{\frac{1}{m} \int_0^m F_x^{-1}(q)^2 dq}$$
$$F_x(r) = P\{d(x, X)f(X)^{1/D} \le r\}$$

Outlier

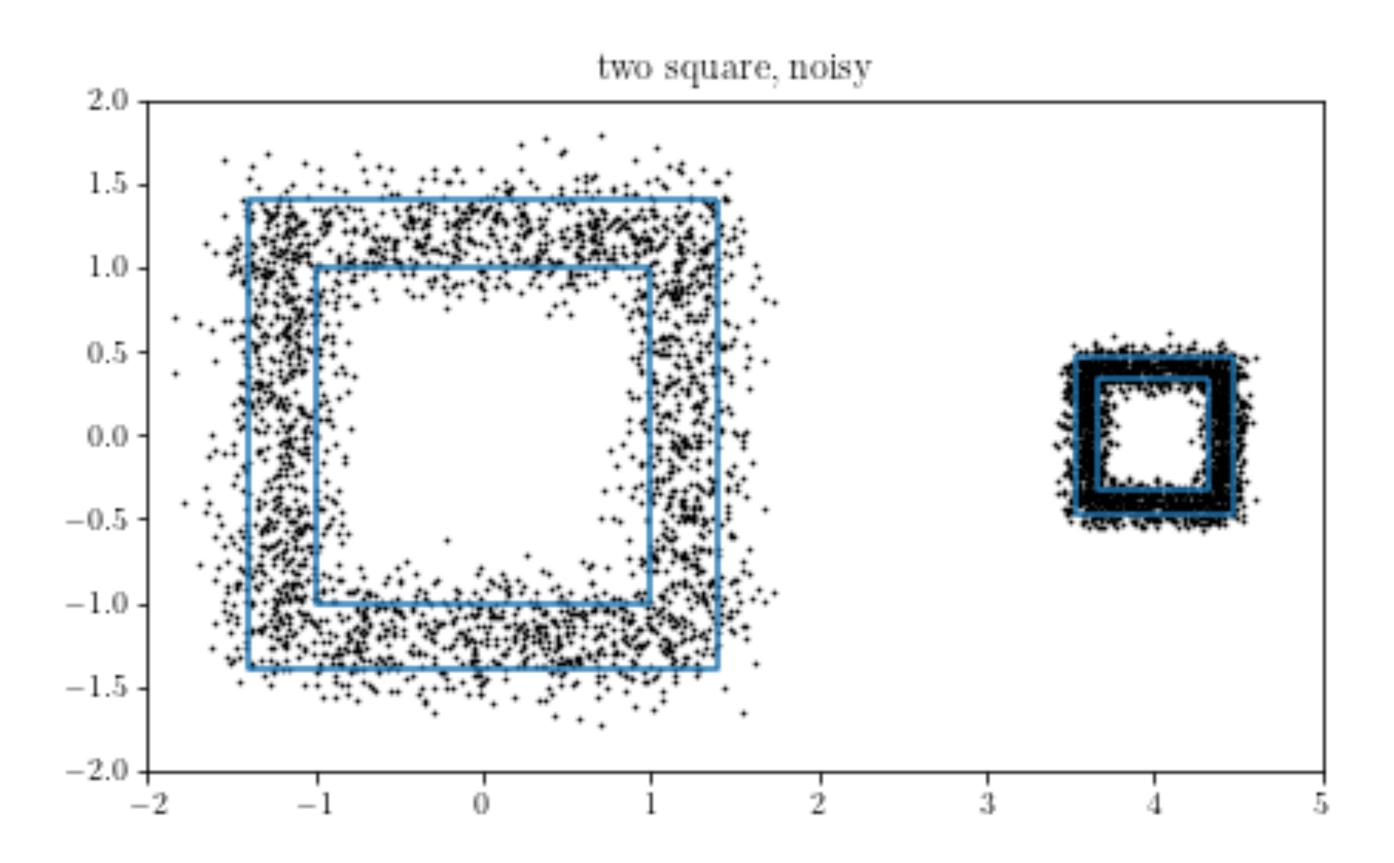


Weighted distance v.s. RDAD

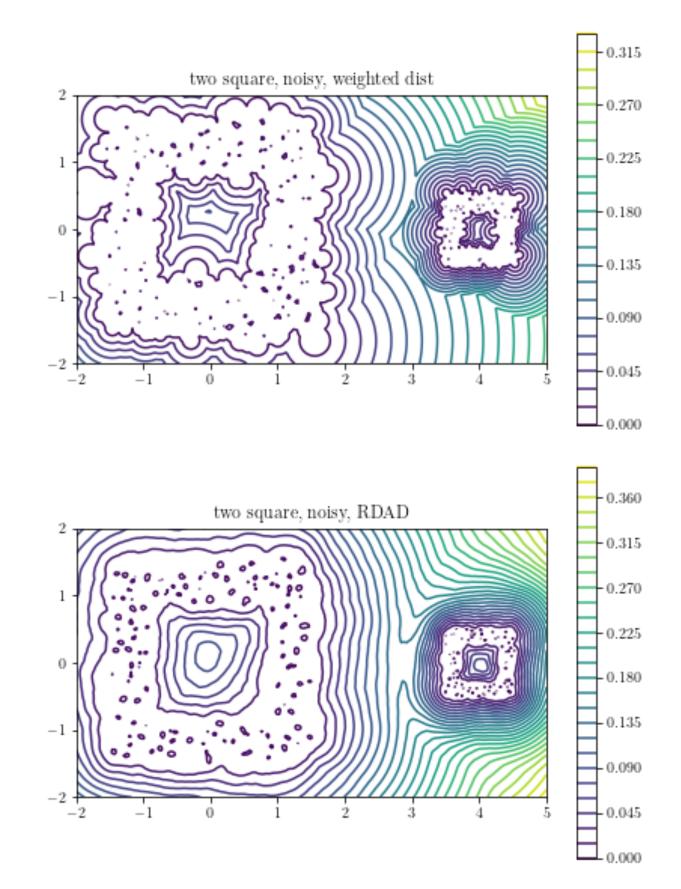


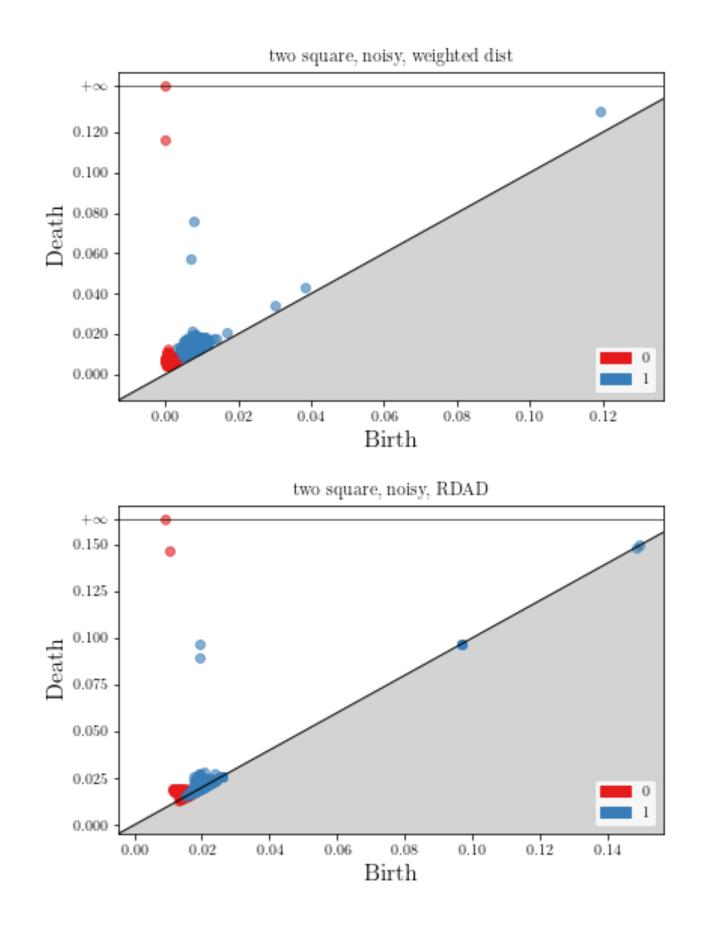


Additive noise



Weighted distance v.s. RDAD





Theorem

- Let f and \tilde{f} be two densities.
- Under nice condition, the persistence diagrams of $RDAD_f$ and $RDAD_{\tilde{f}}$ on a compact set K have bottleneck distance bounded by

 $O(W_p(f, \hat{f}))$

$$\tilde{f}$$
) + $\|f - \tilde{f}\|_{\infty}$)

Statistical Convergence?

Theorem

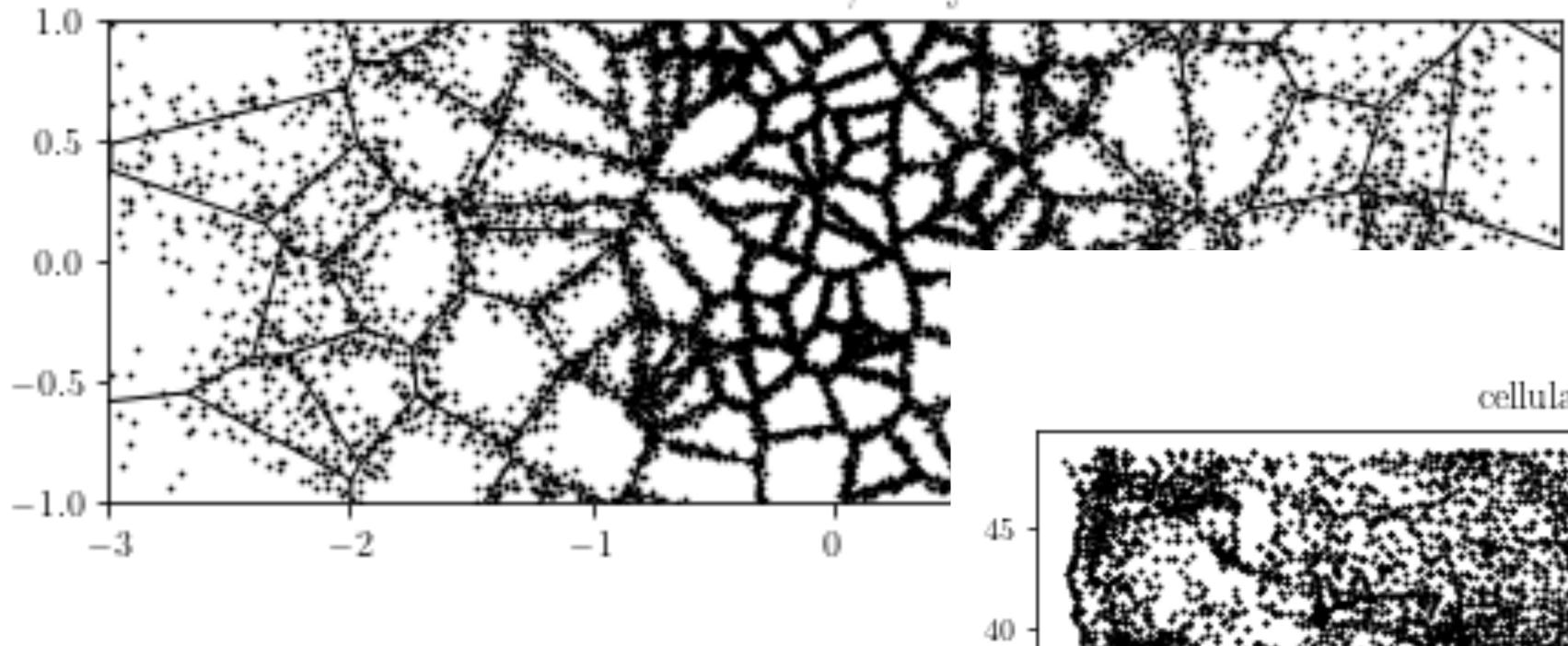
- Let X_1, \ldots, X_N be iid points sampled from a nice density.
- Then on every compact set *K*,

$$\sqrt{N(RDAD^2 - RDAD^2)}$$
 weakly in

$\xrightarrow{\mathsf{n} \ L^{\infty}(K)} a \text{ centered Gaussian process}$

Simulations

Voronoi, noisy

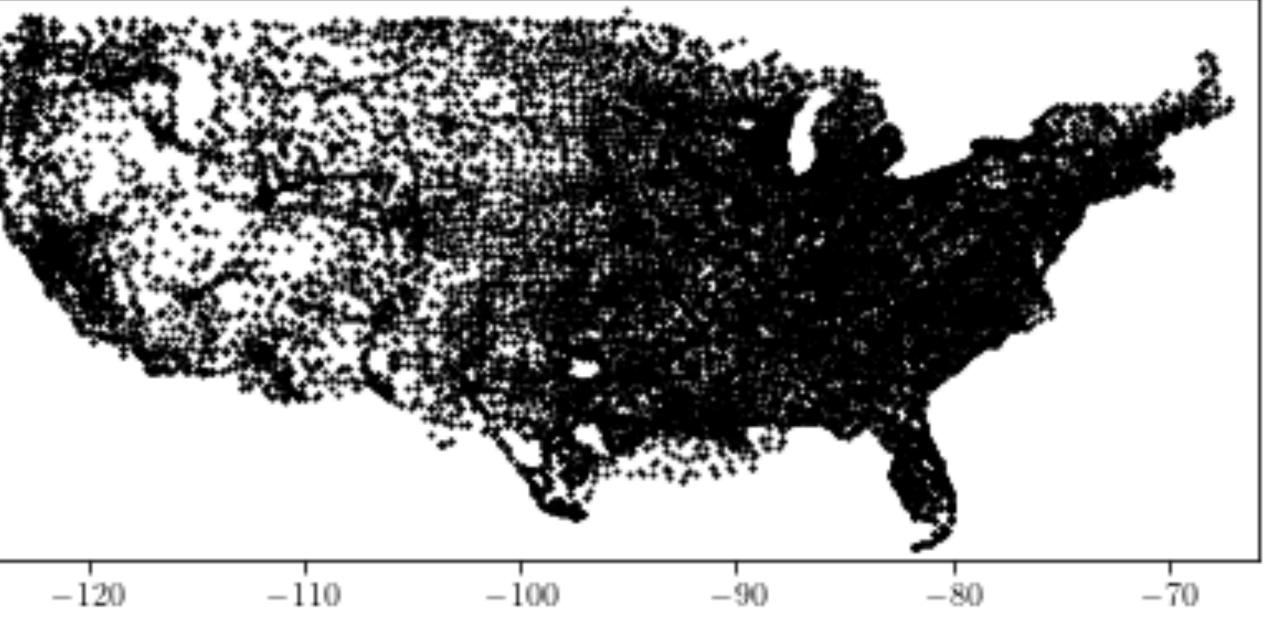


25 -

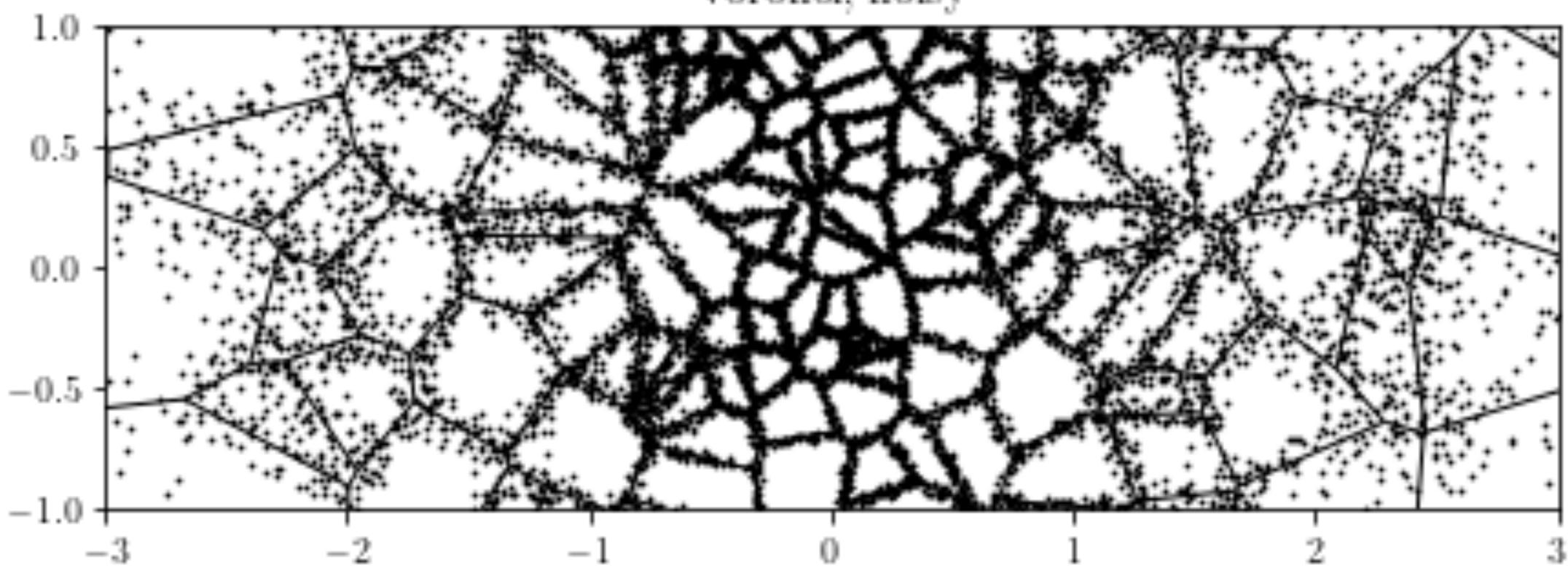
35

30

cellular tower, clean

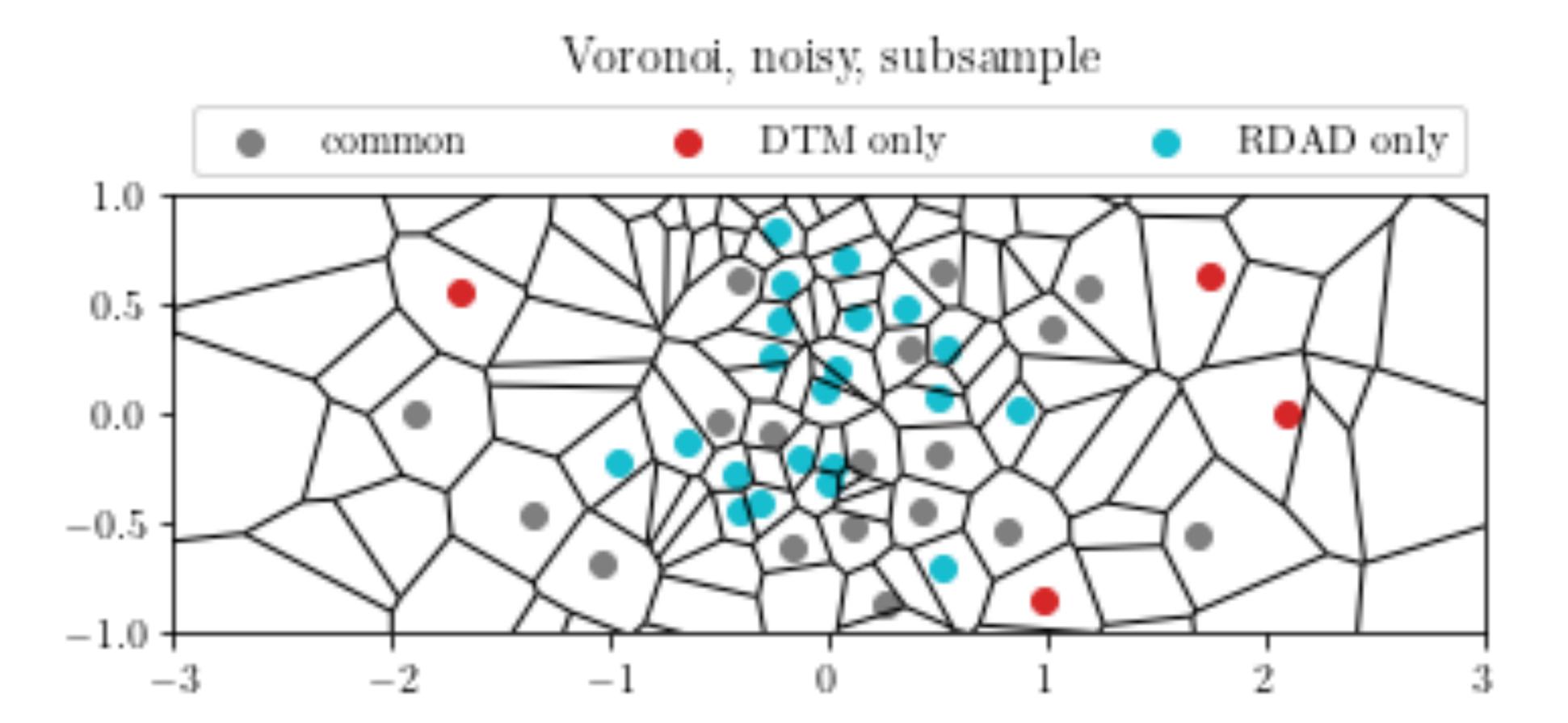


Noisy Voronoi



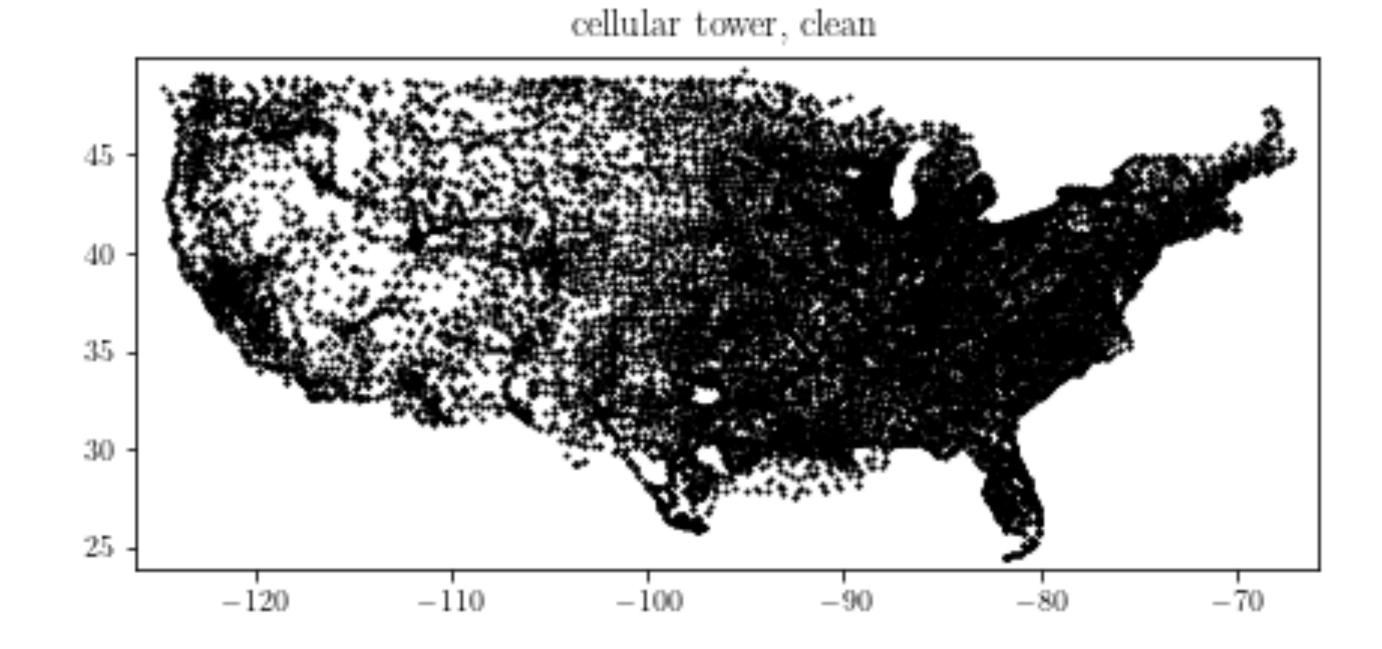
Voronoi, noisy

DTM and RDAD

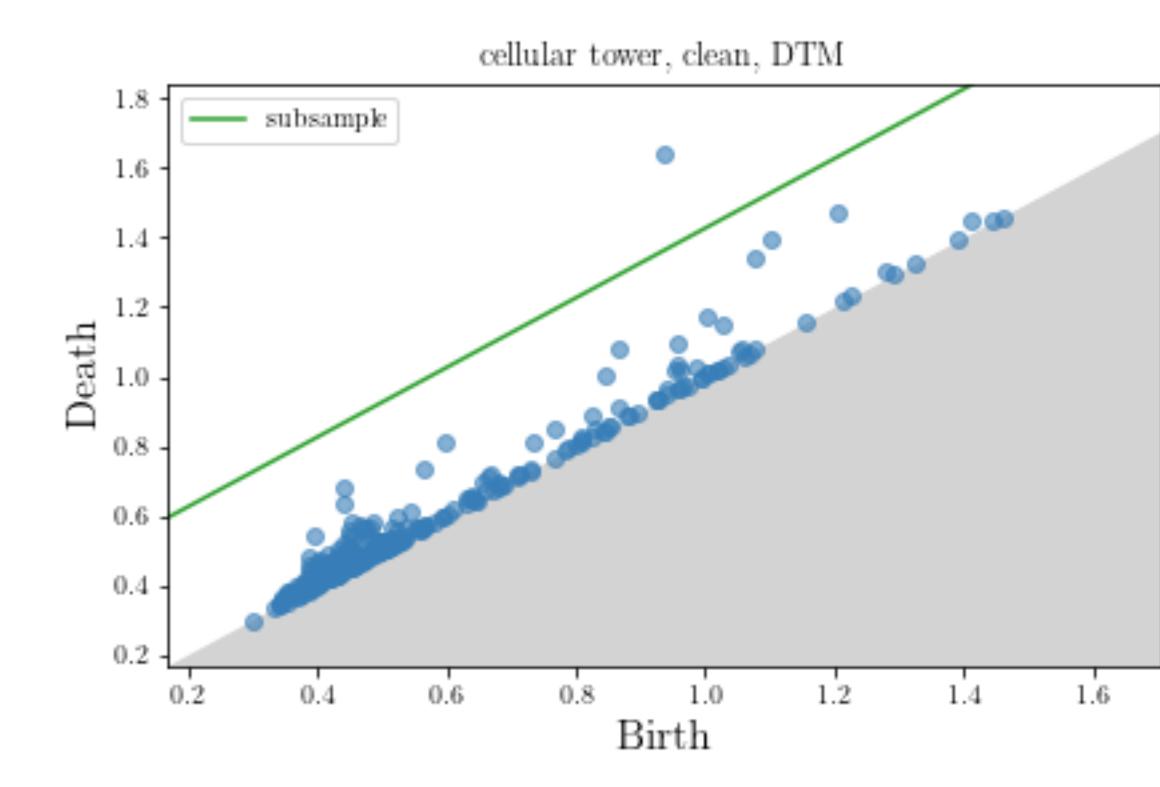


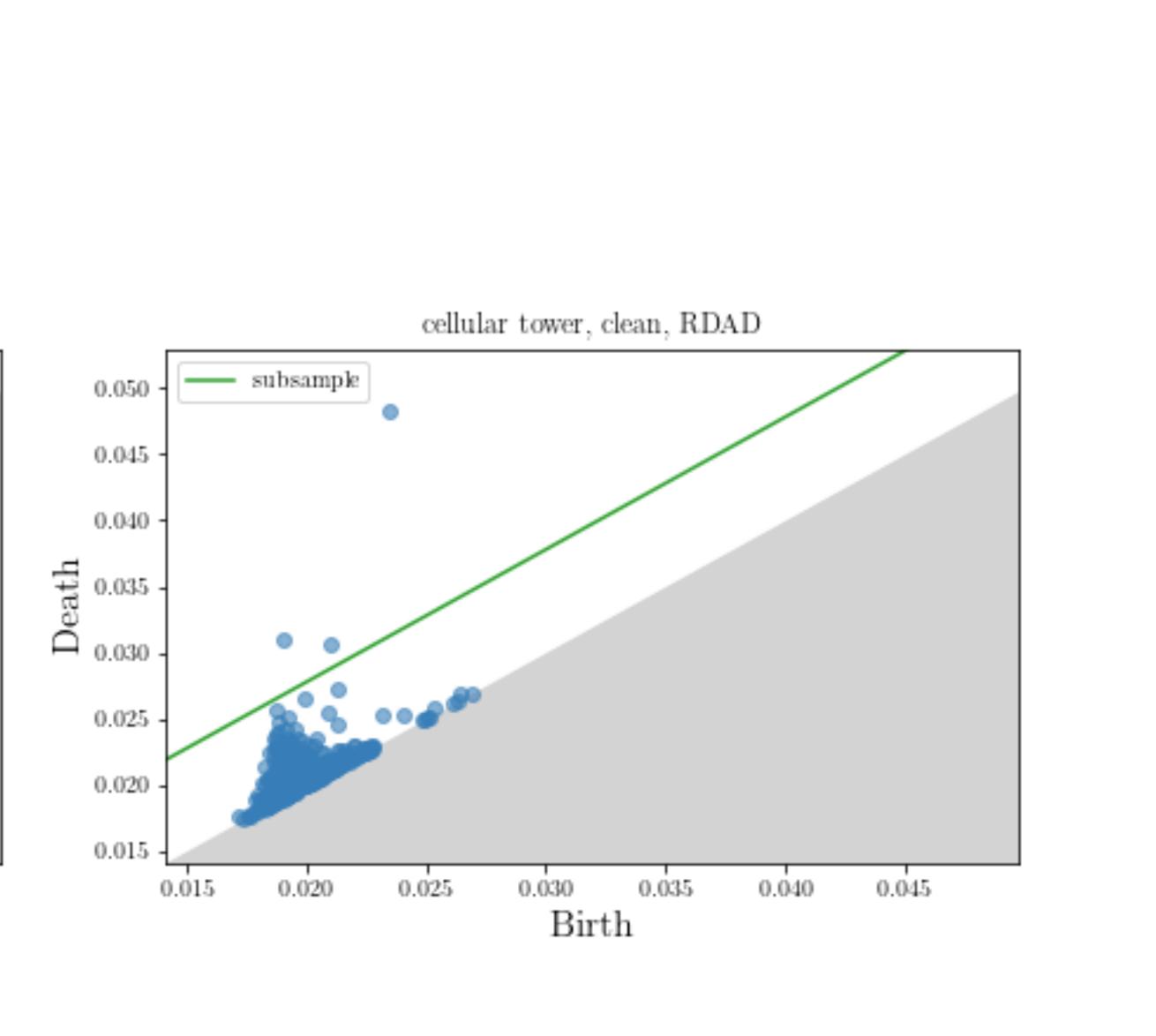
Cellular Towers

Cellular Towers (HIFLD, 2021)

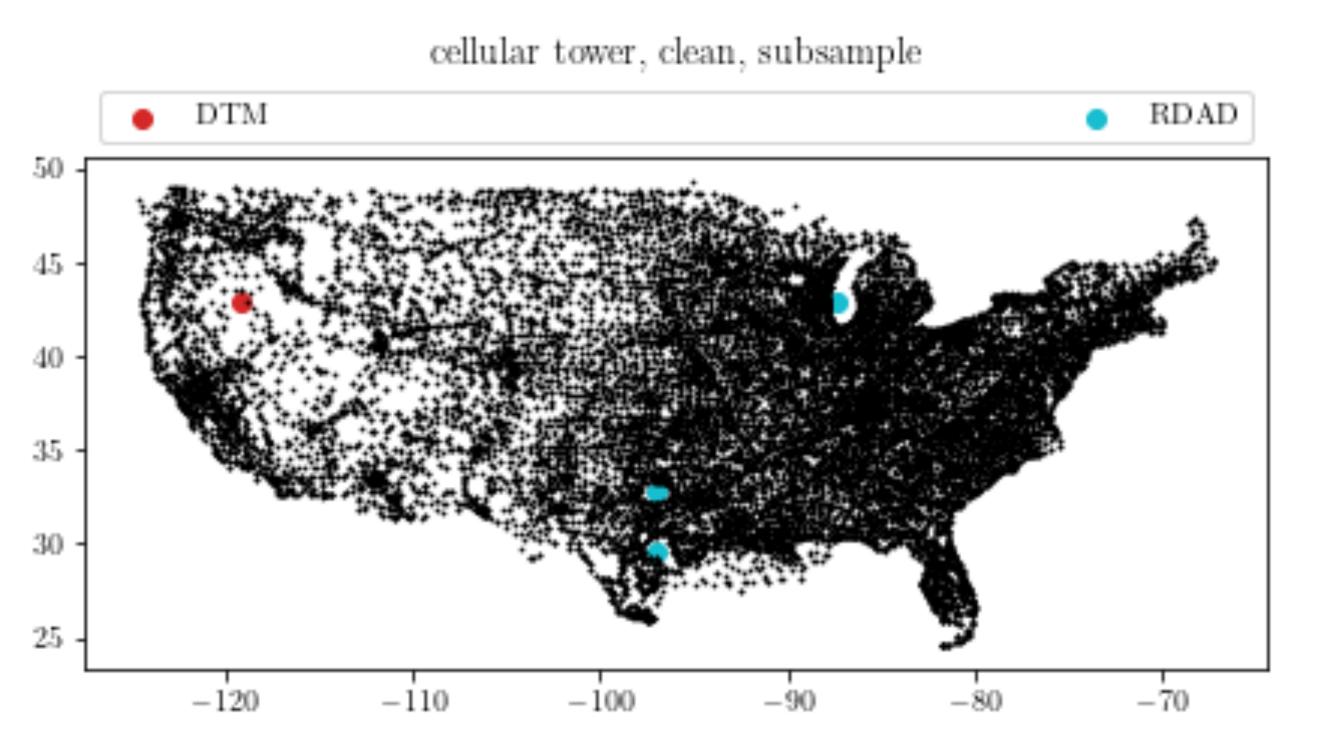


DTM and RDAD





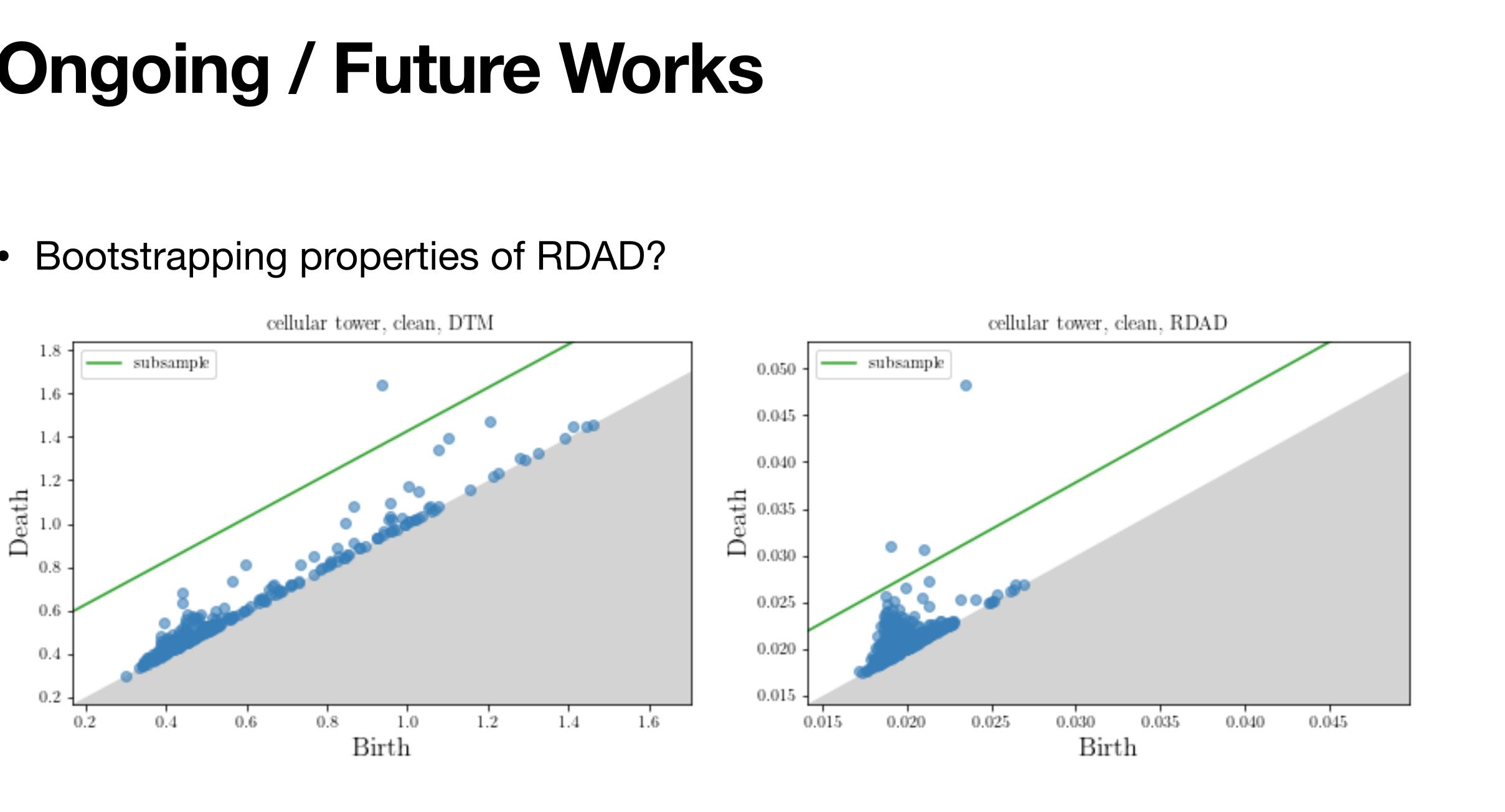
Cellular Towers



Looking Forward

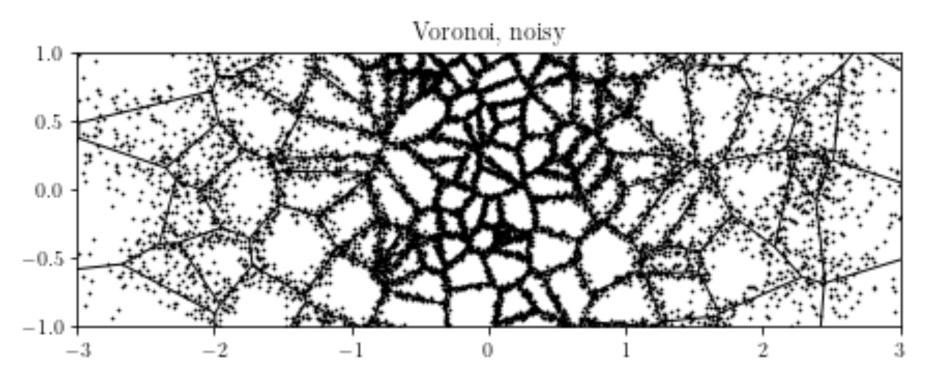
Bootstrapping properties of RDAD?

\bullet

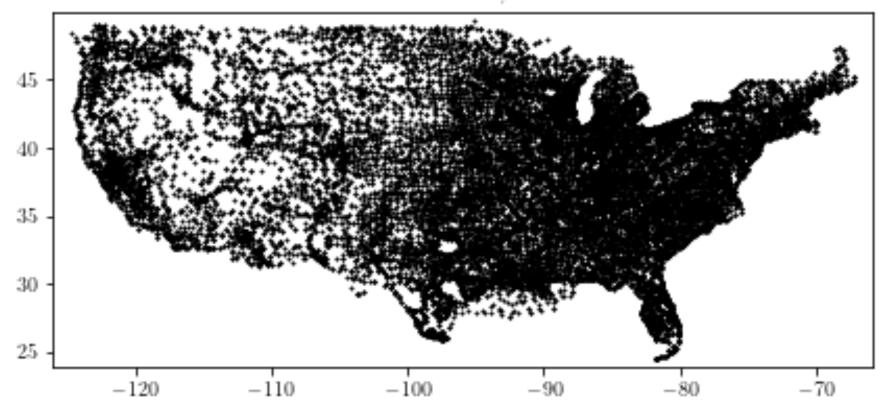


- Bootstrapping properties of RDAD?
- Efficient implementation?

- Bootstrapping properties of RDAD?
- Efficient implementation?



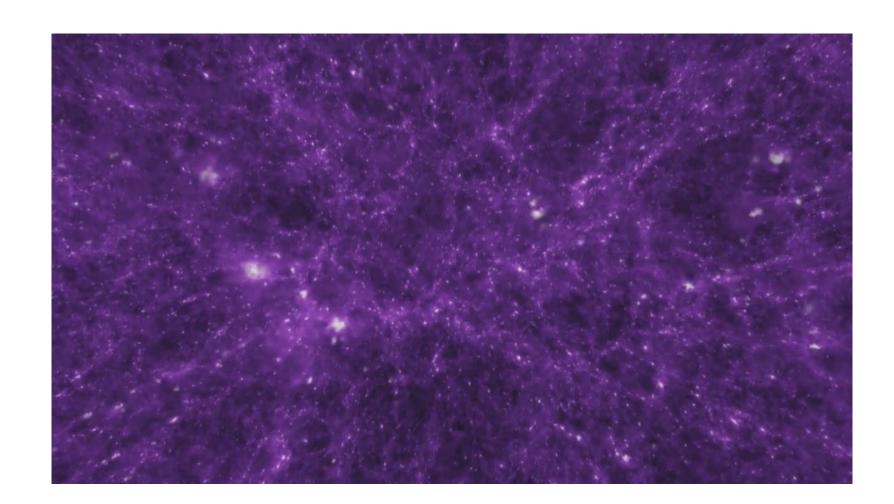
cellular tower, clean

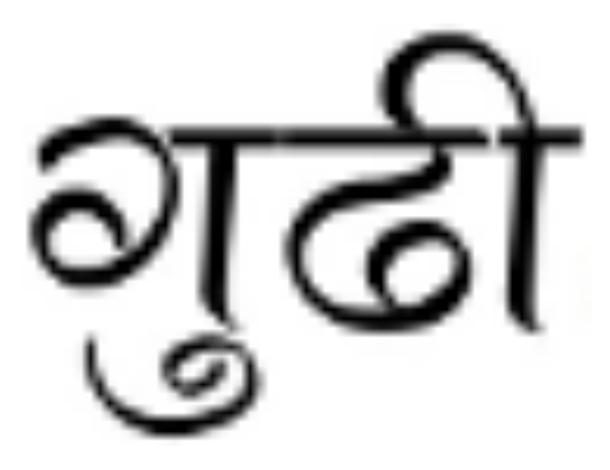


- Bootstrapping properties of RDAD?
- Efficient implementation?
- Inference of Cosmological Parameters?

Ongoing / Future Works

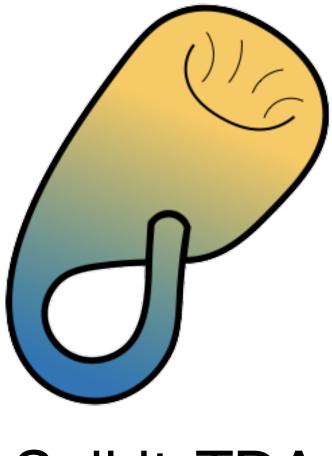
- Bootstrapping properties of RDAD?
- Efficient implementation?
- Inference of Cosmological Parameters?



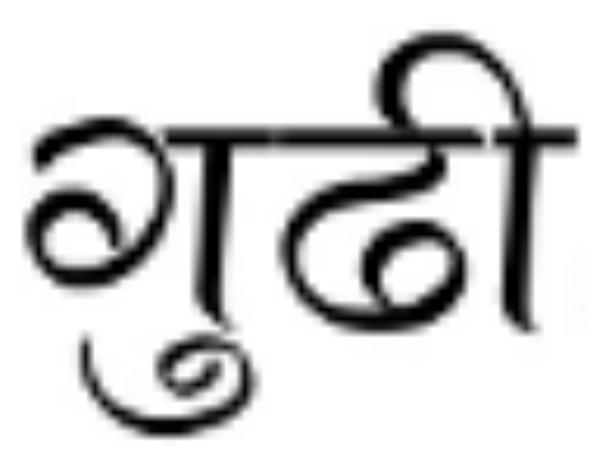


AATRN (Henry Adams)

Gudhi



Scikit-TDA



AATRN (Henry Adams)

Otter et al. EPJ Data Science (2017) 6:17 DOI 10.1140/epjds/s13688-017-0109-5

EPJ.org

REGULAR ARTICLE

EPJ Data Science a SpringerOpen Journal

(E) CrossiMaria

A roadmap for the computation of persistent homology

Nina Otter^{1,3}, Mason A Porter^{4,1,2*}, Ulrike Tillmann^{1,3}, Peter Grindrod¹ and Heather A Harrington¹

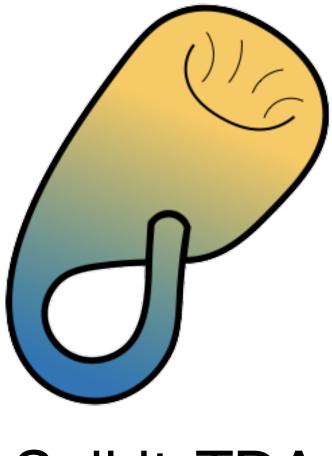
*Correspondence: mason@math.ucla.edu ⁴Department of Mathematics, UCLA, Los Angeles, CA 90095, USA Full list of author information is available at the end of the article

Abstract

Persistent homology (PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and

survey [Nina et al, 2017]

Gudhi



Scikit-TDA

AATRN (Henry Adams)

Otter et al. EPJ Data Science (2017) 6:17 DOI 10.1140/epjds/s13688-017-0109-5

EPJ.org REGULAR ARTICLE EPJ Data Science a SpringerOpen Journal

Open Access

(E) CrossMarie

A roadmap for the computation of persistent homology

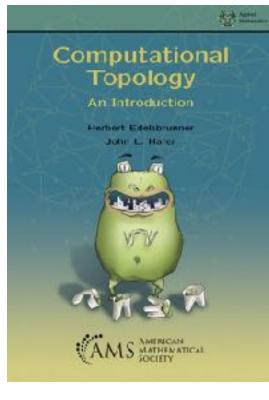
Nina Otter^{1,3}, Mason A Porter^{4,1,2*}, Ulrike Tillmann^{1,3}, Peter Grindrod¹ and Heather A Harrington¹

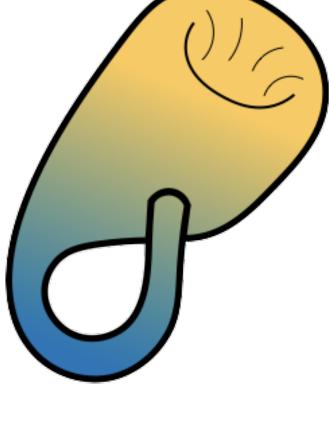
¹Correspondence: mason@math.uda.edu ⁴Department of Mathematics, UCLA, Los Angeles, CA 90096, USA Full list of author information is available at the end of the article

Abstract

Persistent homology (PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and

survey [Nina et al, 2017] [Edelsbrunner and Harer,





Gudhi

TDA textbook sbrunner and Harer, 2010] Scikit-TDA

AATRN (Henry Adams)

Otter et al. EPJ Data Science (2017) 6:17 DOI 10.1140/epjds/s13688-017-0109-5

EPJ^{.org} REGULAR ARTICLE EPJ Data Science a SpringerOpen Journal

Open Access

(E) CrossMarie

A roadmap for the computation of persistent homology

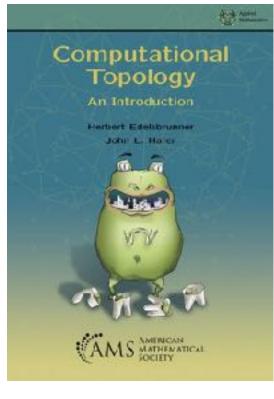
Nina Otter^{1,3}, Mason A Porter^{4,1,2*}, Ulrike Tillmann^{1,3}, Peter Grindrod¹ and Heather A Harrington¹

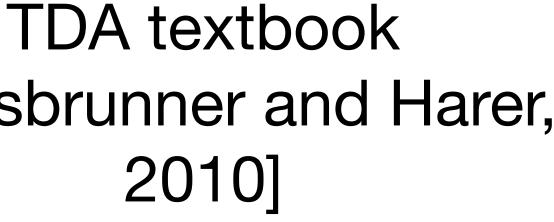
¹Correspondence: mason@math.uda.edu ⁴Department of Mathematics, UCLA, Los Angeles, CA 90096, USA Full list of author information is available at the end of the article

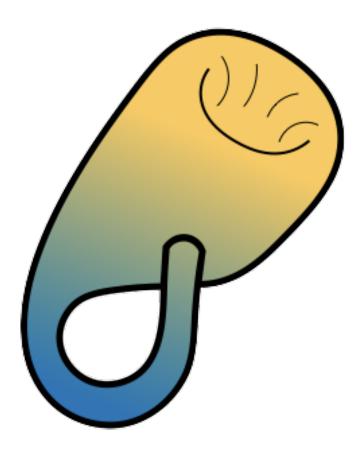
Abstract

Persistent homology (PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and

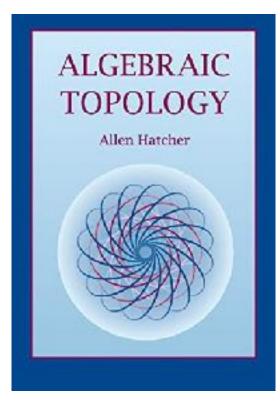
survey [Nina et al, 2017] [Edelsbrunner and Harer,







Scikit-TDA



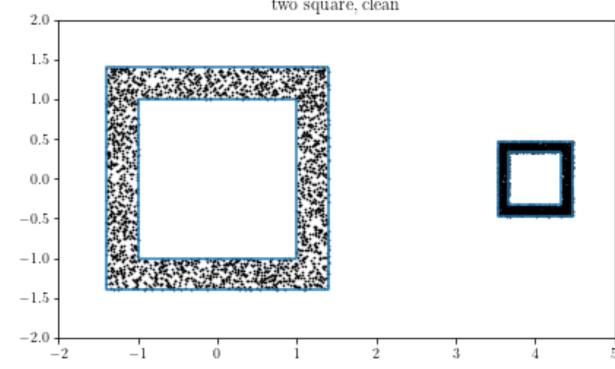
Topology textbook [Hatcher, 2002]

Take-Home Messages

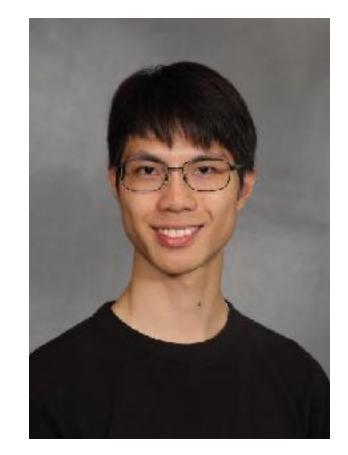
- Topology is useful for understanding nonlinear geometric structures.
- Topological features in low signal-to-noise environment is hard, but doable.

- Chunyin Siu (Alex)
- Cornell University

• cs2323@cornell.edu



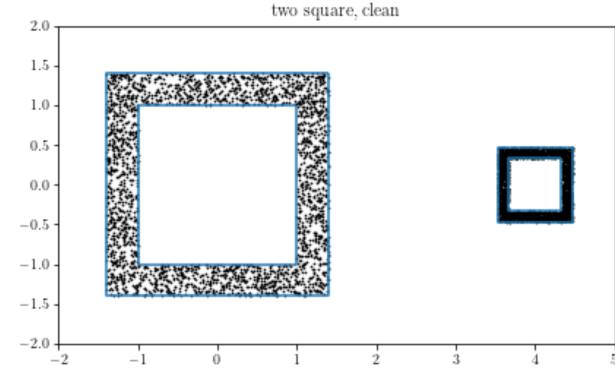
two square, clean

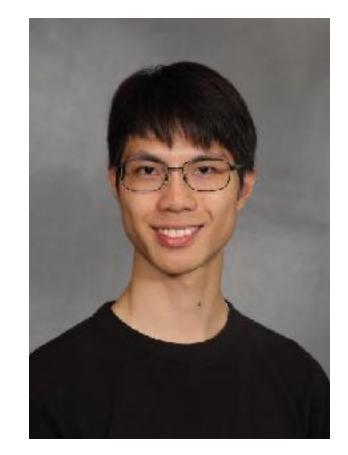


Thank you!

- Chunyin Siu (Alex)
- Cornell University

• cs2323@cornell.edu





References

- 12(5):823-837.
- *Data Science* 1(1): 1–38
- 1076.
- 71–93
- *Comput Math*, 11:733–751.
- Distance to a measure and kernel distance. Journal of Machine Learning Research, 18:1 40.

• Bell, G., Lawson, A., Martin, J., Rudzinski, J., and Smyth, C. (2019). Weighted persistent homology. Involve,

• Berry, T., and Sauer, T. (2019). Consistent manifold representation for topological data analysis. *Foundations of*

• Bruel Gabrielsson, R. and Carlsson, G. (2019). Exposition and interpretation of the topology of neural networks. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pages 1069–

• Carlsson, G., and Zomorodian, A. (2009). The theory of multidimensional persistence. *Discrete Comput Geom*,

• Chazal, F., Cohen-Steiner, D., and Merigot, Q. (2011). Geometric inference for probability measures. *Found*

• Chazal, F., Fasy, B., Lecci, F., Michel, B., Rinaldo, A., and Wasserman, L. (2018). Robust topological inference:

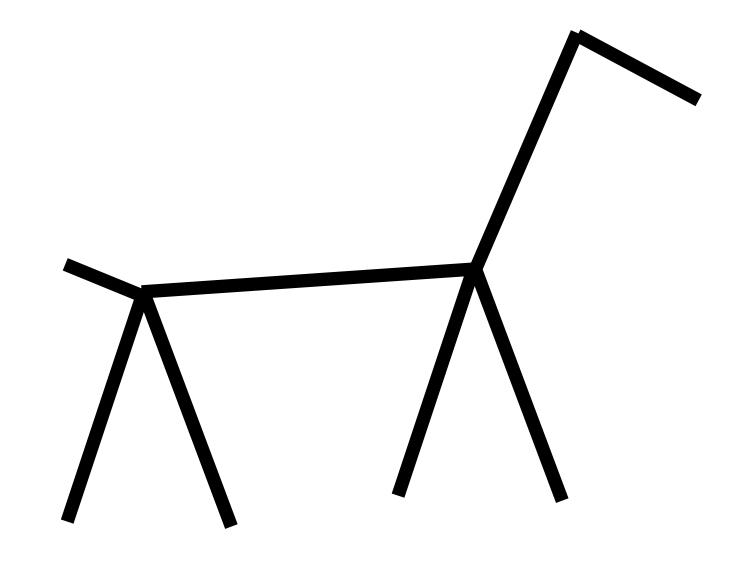
- cloud data. Journal of Computational and Graphical Statistics, 27(3), 576–586.
- Hickok, A. (2022). A Family of Density-Scaled Filtered Complexes
- HIFLD (2021). Cellular towers.
- adsorption in nanoporous materials. The Journal of Physical Chemistry C, 124(17): 9360–9368.
- mapping using topological data analysis reveals a hub-like transition state at rest. *Nature Communications*, 13(1): 4791.
- Wilding, G., Nevenzeel K., van de Weygaert R., Vegter G., Pranav P., Jones B.J.T., Efstathiou K., cosmologies. Monthly Notices of the Royal Astronomical Society, 507 (2): 2968–2990.

• Moon, C., Giansiracusa, N., and Lazar, N.A. (2018). Persistence terrace for topological inference of point

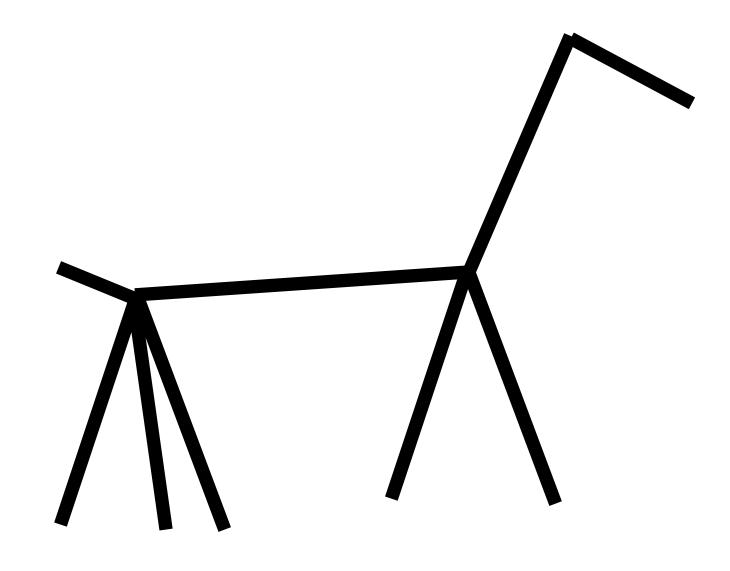
• Krishnapriyan A.S., Haranczyk M., and Morozov D. (2020). Topological descriptors help predict guest

• Saggar M., Shine J.M., Liegeois R., Dosenbach N.U.F., Damien Fair D. (2022). Precision dynamical

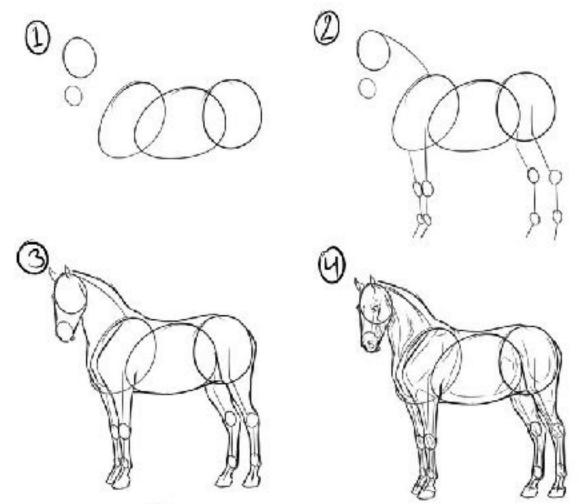
Feldbrugge J. (2021) Persistent homology of the cosmic web – I. Hierarchical topology in ACDM

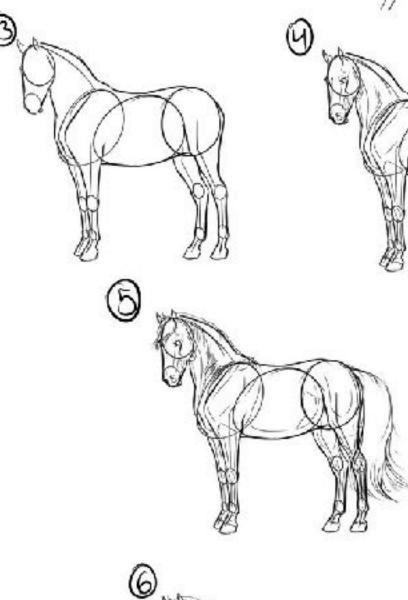


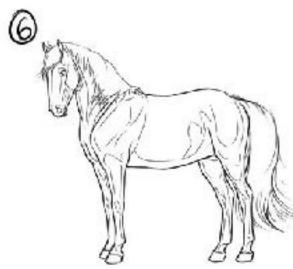
horse



non-horse







TinyGlitch on DeviantArt, from https://www.pinterest.cl/pin/151644712438831173/